Permafrost Carbon Network |
Filter by year: 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011
Here we post publications that are relevant to members of the Permafrost Carbon Network, however, the list is not complete.
Abbott BW, Brown M, Carey JC, Ernakovich J, Frederick JM, Guo L, Hugelius G, Lee RM, Loranty MM, Macdonald R, Mann PJ, Natali SM, Olefeldt D, Pearson P, Rec A, Robards M, Salmon VG, Sayedi SS, Schädel C, Schuur EAG, Shakil S, Shogren AJ, Strauss J, Tank SE, Thornton BF, Treharne R, Turetsky M, Voigt C, Wright N, Yang Y, Zarnetske JP, Zhang Q and Zolkos S 2022 We Must Stop Fossil Fuel Emissions to Protect Permafrost Ecosystems Frontiers in Environmental Science: https://www.frontiersin.org/article/10.3389/fenvs.2022.889428
Boike J, Chadburn S, Martin J, Zwieback S, Althuizen I H J, Anselm N, Cai L, Coulombe S, Lee H, Liljedahl A K, Schneebeli M, Sjöberg Y, Smith N, Smith S L, Streletskiy D A, Stuenzi S M, Westermann S and Wilcox E J 2022 Standardized monitoring of permafrost thaw: a user-friendly, multiparameter protocol Arctic Science 8 153–82 https://doi.org/10.1139/as-2021-000
Burke E, Chadburn S and Huntingford C 2022 Thawing Permafrost as a Nitrogen Fertiliser: Implications for Climate Feedbacks Nitrogen 3 353–75 https://doi.org/10.3390/nitrogen3020023
Castro-Morales K, Canning A, Körtzinger A, Göckede M, Küsel K, Overholt WA, Wichard T, Redlich S, Arzberger S, Kolle O and Zimov N 2022 Effects of Reversal of Water Flow in an Arctic Floodplain River on Fluvial Emissions of CO2 and CH4 Journal of Geophysical Research: Biogeosciences 127 e2021JG006485 https://doi.org/10.1029/2021JG006485
Ernakovich JG, Barbato RA, Rich VI, Schädel C, Hewitt RE, Doherty SJ, Whalen ED, Abbott BW, Barta J, Biasi C, Chabot CL, Hultman J, Knoblauch C, Vetter MCY L, Leewis M-C, Liebner S, Mackelprang R, Onstott TC, Richter A, Schütte UME, Siljanen HMP, Taş N, Timling I, Vishnivetskaya TA, Waldrop MP and Winkel M Microbiome assembly in thawing permafrost and its feedbacks to climate Global Change Biology 2022: https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.16231
Farquharson LM, Romanovsky VE, Kholodov A and Nicolsky D 2022 Sub-aerial talik formation observed across the discontinuous permafrost zone of Alaska Nat. Geosci. 1–7 https://doi.org/10.1038/s41561-022-00952-z
Holmes ME, Crill PM, Burnett WC, McCalley CK, Wilson RM, Frolking S, Chang K-Y, Riley WJ, Varner RK, Hodgkins SB, Coordinators IP, Team IF, McNichol AP, Saleska SR, Rich VI and Chanton JP 2022 Carbon Accumulation, Flux, and Fate in Stordalen Mire, a Permafrost Peatland in Transition Global Biogeochemical Cycles 36 e2021GB007113 https://doi.org/10.1029/2021GB007113
Jones BM, Grosse G, Farquharson LM, Roy-Léveillée P, Veremeeva A, Kanevskiy MZ, Gaglioti BV, Breen AL, Parsekian AD, Ulrich M, and Hinkel KM. 2022. Lake and drained lake basin systems in lowland permafrost regions. Nature Reviews Earth & Environment, 3 85-98. https://www.nature.com/articles/s43017-021-00238-9
Li Q, Liu Y, Kou D, Peng Y and Yang Y. 2022. Substantial non‐growing season carbon dioxide loss across Tibetan alpine permafrost region. Global Change Biology, 28 5200-5210. https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.16315
Miner KR, Turetsky MR, Malina E, Bartsch A, Tamminen J, McGuire AD, Fix A, Sweeney C, Elder CD and Miller CE 2022 Permafrost carbon emissions in a changing Arctic Nat Rev Earth Environ 3 55–67 https://doi.org/10.1038/s43017-021-00230-3
Pedron SA, Welker JM., Euskirchen ES., Klein ES, Walker JC, Xu X and Czimczik CI. Closing the winter gap – Year-round measurements of soil CO2 emission sources in Arctic tundra Geophysical Research Letters 2022 e2021GL097347 https://doi.org/10.1029/2021GL097347
Treharne R, Rogers BM, Gasser T, MacDonald E and Natali S 2022 Identifying Barriers to Estimating Carbon Release From Interacting Feedbacks in a Warming Arctic Frontiers in Climate 3 Online: https://www.frontiersin.org/article/10.3389/fclim.2021.716464
Schuur EAG, Abbott B, Commane R, Ernakovich J, Euskirchen E, Hugelius G, Grosse G, Jones M, Koven C, Leyshk V, Lawrence D, Loranty M, Mauritz M, Olefeldt D, Natali S, Rodenhizer H, Salmon V, Schädel C, Strauss J, Treat C, and Turetsky M. 2022. Annual Review of Environment and Resources. 47 28.1-28.29. https://www.annualreviews.org/doi/pdf/10.1146/annurev-environ-012220-011847
Straus J, Biasi C, Sanders T, Abbott BW, von Deimling TS, Voigt C, Winkel M, Marushchak ME, Kou D, Fuchs M, Horn MA, Jongejans LL, Liebner S, Nitzbon J, Schirrmeister L, Anthony KW, Yang Y, Zubrzyscki S, Laboor S, Treat C, and Grosse G. 2022. A globally relevant stock of soil nitrogen in the Yedoma permafrost domain. Nature Communications 13 6074. https://doi.org/10.1038/s41467-022-33794-9
Varner RK, Crill PM, Frolking S, McCalley CK, Burke SA, Chanton JP, Holmes ME, null null, Saleska S and Palace MW 2022 Permafrost thaw driven changes in hydrology and vegetation cover increase trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014 Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 380 20210022 https://doi.org/10.1098/rsta.2021.0022
Virkkala A-M, Natali SM, Rogers BM, Watts JD, Savage K, Connon SJ, Mauritz M, Schuur EAG, Peter D, Minions C, Nojeim J, Commane R, Emmerton CA, Goeckede M, Helbig M, Holl D, Iwata H, Kobayashi H, Kolari P, López-Blanco E, Marushchak ME, Mastepanov M, Merbold L, Parmentier F-J W, Peichl M, Sachs T, Sonnentag O, Ueyama M, Voigt C, Aurela M, Boike J, Celis G, Chae N, Christensen TR, Bret-Harte MS, Dengel S, Dolman H, Edgar CW, Elberling B, Euskirchen E, Grelle A, Hatakka J, Humphreys E, Järveoja J, Kotani A, Kutzbach L, Laurila T, Lohila A, Mammarella I, Matsuura Y, Meyer G, Nilsson MB, Oberbauer SF, Park S-J, Petrov R, Prokushkin AS, Schulze C, St. Louis VL, Tuittila E-S, Tuovinen J-P, Quinton W, Varlagin A, Zona D and Zyryanov VI 2022 The ABCflux database: Arctic–boreal CO2 flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems Earth System Science Data 14 179–208 https://doi.org/10.5194/essd-14-179-2022
Berner LT, Massey R, Jantz P, Forbes BC, Macias-Fauria M, Myers-Smith I, Kumpula T, Gauthier G, Andreu-Hayles L, Gaglioti BV, Burns P, Zetterberg P, D’Arrigo R and Goetz S J 2020 Summer warming explains widespread but not uniform greening in the Arctic tundra biome Nature Communications 11 4621 https://doi.org/10.1038/s41467-020-18479-5
Bouskill NJ, Riley WJ, Zhu Q, Mekonnen ZA and Grant RF 2020 Alaskan carbon-climate feedbacks will be weaker than inferred from short-term experiments Nature Communications 11 5798 https://doi.org/10.1038/s41467-020-19574-3
Chen Y, Hu FS and Lara M J 2021 Divergent shrub-cover responses driven by climate, wildfire, and permafrost interactions in Arctic tundra ecosystems Global Change Biology 27 652–6 https://doi.org/10.1111/gcb.15451
Elder CD, Thompson DR, Thorpe AK, Chandanpurkar HA, Hanke PJ, Hasson N, James SR, Minsley BJ, Pastick NJ, Olefeldt D, Walter Anthony KM and Miller CE 2021 Characterizing Methane Emission Hotspots From Thawing Permafrost Global Biogeochemical Cycles 35 e2020GB006922 https://doi.org/10.1029/2020GB006922
Garnello A, Marchenko S, Nicolsky D, Romanovsky V, Ledman J, Celis G, Schädel C, Luo Y and Schuur EAG 2021 Projecting Permafrost Thaw of Sub-Arctic Tundra With a Thermodynamic Model Calibrated to Site Measurements Journal of Geophysical Research: Biogeosciences 126 e2020JG006218 https://doi.org/10.1029/2020JG006218
Jentzsch K, Schulz A, Pirk N, Foken T, Crewell S and Boike J 2021 High Levels of CO2 Exchange During Synoptic-Scale Events Introduce Large Uncertainty Into the Arctic Carbon Budget Geophysical Research Letters 48 e2020GL092256 https://doi.org/10.1029/2020GL092256
Kuhn MA, Varner RK, Bastviken D, Crill P, MacIntyre S, Turetsky M, Walter Anthony K, McGuire A D and Olefeldt D 2021 BAWLD-CH4: a comprehensive dataset of methane fluxes from boreal and arctic ecosystems Earth System Science Data 13, 5151–5189, https://doi.org/10.5194/essd-13-5151-2021
Kuhn MA, Thompson L M, Winder JC, Braga LPP, Tanentzap AJ, Bastviken D and Olefeldt D 2021 Opposing Effects of Climate and Permafrost Thaw on CH4 and CO2 Emissions From Northern Lakes AGU Advances 2 e2021AV000515 https://doi.org/10.1029/2021AV000515
Lara MJ, McGuire AD, Euskirchen ES, Genet H, Yi S, Rutter R, Iversen C, Sloan V and Wullschleger SD 2020 Local-scale Arctic tundra heterogeneity affects regional-scale carbon dynamics Nature Communications 11 4925 https://doi.org/10.1038/s41467-020-18768-z
Manies K L, Jones M C, Waldrop M P, Leewis M-C, Fuller C, Cornman R S and Hoefke K 2021 Influence of permafrost type and site history on losses of permafrost carbon after thaw Journal of Geophysical Research: Biogeosciences e2021JG006396 https://doi.org/10.1029/2021JG006396
Marushchak ME, Kerttula J, Diáková K, Faguet A, Gil J, Grosse G, Knoblauch C, Lashchinskiy N, Martikainen PJ, Morgenstern A, Nykamb M, Ronkainen JG, Siljanen HMP, van Delden L, Voigt C, Zimov N, Zimov S and Biasi C 2021 Thawing Yedoma permafrost is a neglected nitrous oxide source Nat Commun 12 7107 https://doi.org/10.1038/s41467-021-27386-2
Mauritz M, Pegoraro E, Ogle K, Ebert C and Schuur EAG 2021 Investigating thaw and plant productivity constraints on old soil carbon respiration from permafrost Journal of Geophysical Research: Biogeosciences e2020JG006000 https://doi.org/10.1029/2020JG006000
Mishra U, Hugelius G, Shelef E, Yang Y, Strauss J, Lupachev A, Harden J W, Jastrow J D, Ping C-L, Riley W J, Schuur E A G, Matamala R, Siewert M, Nave L E, Koven C D, Fuchs M, Palmtag J, Kuhry P, Treat C C, Zubrzycki S, Hoffman F M, Elberling B, Camill P, Veremeeva A and Orr A 2021 Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks Sciene Advances 7 eaaz5236 doi: 10.1126/sciadv.aaz5236
Monhonval A, Mauclet E, Pereira B, Vandeuren A, Strauss J, Grosse G, Schirrmeister L, Fuchs M, Kuhry P and Opfergelt S 2021 Mineral Element Stocks in the Yedoma Domain: A Novel Method Applied to Ice-Rich Permafrost Regions Frontiers in Earth Science 9 773 https://doi.org/10.3389/feart.2021.703304
Moon TA, Druckenmiller ML and Thoman RL 2021 Arctic Report Card 2021https://arctic.noaa.gov/Report-Card/Report-Card-2021/ArtMID/8022/ArticleID/935/Executive-Summary
Mu C, Abbott BW, Norris AJ, Mu M, Fan C, Chen X, Jia L, Yang R, Zhang T, Wang K, Peng X, Wu Q, Guggenberger G and Wu X 2020 The status and stability of permafrost carbon on the Tibetan Plateau Earth-Science Reviews 211 103433 https://doi.org/10.1016/j.earscirev.2020.103433
Natali SM, Holdren JP, Rogers BM, Treharne R, Duffy PB, Pomerance R and MacDonald E 2021 Permafrost carbon feedbacks threaten global climate goals PNAS 118 Online: https://www.pnas.org/content/118/21/e2100163118
Olefeldt D, Hovemyr M, Kuhn M A, Bastviken D, Bohn T J, Connolly J, Crill P, Euskirchen E S, Finkelstein S A, Genet H, Grosse G, Harris L I, Heffernan L, Helbig M, Hugelius G, Hutchins R, Juutinen S, Lara M J, Malhotra A, Manies K, McGuire A D, Natali S M, O’Donnell J A, Parmentier F-J W, Räsänen A, Schädel C, Sonnentag O, Strack M, Tank S, Treat C, Varner R K, Virtanen T, Warren R K and Watts J D 2021 The Boreal-Arctic Wetland and Lake Dataset (BAWLD) Earth System Science Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021
Pongracz A, Wårlind D, Miller P A and Parmentier F-J W 2021 Model simulations of arctic biogeochemistry and permafrost extent are highly sensitive to the implemented snow scheme in LPJ-GUESS Biogeosciences 18 5767–87 https://doi.org/10.5194/bg-18-5767-2021
Schuur EAG, Bracho R, Celis G, Belshe F, Ebert C, Ledman J, Mauritz M, Pegoraro E, Plaza C, Rodenhizer H, Romanovsky V, Schädel C, Schirokauer D, Taylor M, Vogel J and Webb E 2021 Tundra underlain by thawing permafrost persistently emits carbon to the atmosphere over fifteen years of measurements Journal of Geophysical Research: Biogeosciences https://doi.org/10.1029/2020JG006044
Shu S, Jain AK, Koven CD and Mishra U 2020 Estimation of Permafrost SOC Stock and Turnover Time Using a Land Surface Model With Vertical Heterogeneity of Permafrost Soils Global Biogeochemical Cycles 34 e2020GB006585 https://doi.org/10.1029/2020GB006585
Strauss J, Laboor S, Schirrmeister L, Fedorov A N, Fortier D, Froese D, Fuchs M, Günther F, Grigoriev M, Harden J, Hugelius G, Jongejans L L, Kanevskiy M, Kholodov A, Kunitsky V, Kraev G, Lozhkin A, Rivkina E, Shur Y, Siegert C, Spektor V, Streletskaya I, Ulrich M, Vartanyan S, Veremeeva A, Anthony K W, Wetterich S, Zimov N and Grosse G 2021 Circum-Arctic Map of the Yedoma Permafrost Domain Frontiers in Earth Science 9 1001 https://doi.org/10.3389/feart.2021.758360
Subedi R, Kokelj SV and Gruber S 2020 Ground ice, organic carbon and soluble cations in tundra permafrost soils and sediments near a Laurentide ice divide in the Slave Geological Province, Northwest Territories, Canada The Cryosphere 14 4341–64 https://doi.org/10.5194/tc-14-4341-2020
Treat CC, Jones MC, Alder J, Sannel ABK, Camill P and Frolking S 2021 Predicted Vulnerability of Carbon in Permafrost Peatlands With Future Climate Change and Permafrost Thaw in Western Canada Journal of Geophysical Research: Biogeosciences 126 e2020JG005872 https://doi.org/10.1029/2020JG005872
Virkkala A-M, Aalto J, Rogers BM, Tagesson T, Treat CC, Natali SM, Watts JD, Potter S, Lehtonen A, Mauritz M, Schuur EAG, Kochendorfer J, Zona D, Oechel W, Kobayashi H, Humphreys E, Goeckede M, Iwata H, Lafleur P, Euskirchen ES, Bokhorst S, Marushchak M, Martikainen PJ, Elberling B, Voigt C, Biasi C, Sonnentag O, Parmentier F-J W, Ueyama M, Celis G, St.Loius VL, Emmerton CA, Peichl M, Chi J, Järveoja J, Nilsson MB, Oberbauer SF, Torn MS, Park S-J, Dolman H, Mammarella I, Chae N, Poyatos R, López‐Blanco E, Christensen T R, Kwon MJ, Sachs T, Holl D and Luoto M Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: regional patterns and uncertainties Global Change Biology Online: https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.15659
de Vrese P and Brovkin V 2021 Timescales of the permafrost carbon cycle and legacy effects of temperature overshoot scenarios Nature Communications 12 2688 https://doi.org/10.1038/s41467-021-23010-5
Waldrop MP, McFarland JW, Manies KL, Leewis MC, Blazewicz SJ, Jones MC, Neumann RB, Keller JK, Cohen L, Euskirchen ES, Edgar C, Turetsky MR and Cable WL 2021 Carbon Fluxes and Microbial Activities From Boreal Peatlands Experiencing Permafrost Thaw Journal of Geophysical Research: Biogeosciences 126 e2020JG005869 https://doi.org/10.1029/2020JG005869
Walter Anthony KM, Lindgren P, Hanke P, Engram M, Anthony P, Daanen R, Bondurant AC, Liljedahl AK, Lenz J, Grosse G, Jones BM, Brosius L, James SR, Minsley BJ, Pastick NJ, Munk J, Chanton J, Miller CE and Meyer FJ 2020 Decadal-scale hotspot methane ebullition within lakes following abrupt permafrost thaw Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abc848
Wickland KP, Jorgenson MT, Koch JC, Kanevskiy M and Striegl RG 2020 Carbon Dioxide and Methane Flux in a Dynamic Arctic Tundra Landscape: Decadal-Scale Impacts of Ice Wedge Degradation and Stabilization Geophysical Research Letters 47 e2020GL089894 https://doi.org/10.1029/2020GL089894
Andresen CG, Lawrence DM, Wilson CJ, McGuire AD, Koven C, Schaefer K, Jafarov E, Peng S, Chen X, Gouttevin I, Burke E, Chadburn S, Ji D, Chen G, Hayes D, & Zhang W. (2020). Soil moisture and hydrology projections of the permafrost region – a model intercomparison. The Cryosphere, 14(2), 445–459. https://doi.org/10.5194/tc-14-445-2020
Burd K, Estop-Aragonés C, Tank SE, & Olefeldt D (2020). Lability of dissolved organic carbon from boreal peatlands: interactions between permafrost thaw, wildfire, and season. Canadian Journal of Soil Science, 1–13. https://doi.org/10.1139/cjss-2019-0154
Douglas TA, Turetsky MR and Koven CD 2020 Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems npj Climate and Atmospheric Science 3 1–7. https://doi.org/10.1038/s41612-020-0130-4
Ekici A, Lee H, Lawrence DM, Swenson SC, & Prigent C (2019). Ground subsidence effects on simulating dynamic high-latitude surface inundation under permafrost thaw using CLM5. Geoscientific Model Development, 12(12), 5291–5300. https://doi.org/10.5194/gmd-12-5291-2019
Estop-Aragonés C, Olefeldt D, Abbott BW, Chanton JP, Czimczik CI, Dean JF, Egan JE, Gandois L, Garnett MH, Hartley IP, Hoyt A, Lupascu M, Natali SM, O’Donnell JA, Raymond PA, Tanentzap AJ, Tank SE, Schuur EAG, Turetsky M and Anthony KW Assessing the Potential for Mobilization of Old Soil Carbon after Permafrost Thaw: A Synthesis of 14C Measurements from the Northern Permafrost Region Global Biogeochemical Cyclese2020GB006672 https://doi.org/10.1029/2020GB006672
Gibson CM, Estop-Aragonés C, Flannigan M, Thompson DK, & Olefeldt D (2019). Increased deep soil respiration detected despite reduced overall respiration in permafrost peat plateaus following wildfire. Environmental Research Letters, 14(12), 125001. https://doi.org/10.1088/1748-9326/ab4f8d
Heffernan L, Estop‐Aragonés C, Knorr K-H, Talbot J, & Olefeldt D (2020). Long-term Impacts of Permafrost Thaw on Carbon Storage in Peatlands: Deep Losses Offset by Surficial Accumulation. Journal of Geophysical Research: Biogeosciences, 125(3), e2019JG005501. https://doi.org/10.1029/2019JG005501
Heslop JK, Walter Anthony KM, Winkel M, Sepulveda-Jauregui A, Martinez-Cruz K, Bondurant A, Grosse G and Liebner S 2020 A synthesis of methane dynamics in thermokarst lake environments Earth-Science Reviews 210 103365 https://doi.org/10.1016/j.earscirev.2020.103365
Hugelius G, Loisel J, Chadburn S, Jackson RB, Jones M, MacDonald G, Marushchak M, Olefeldt D, Packalen M, Siewert MB, Treat C, Turetsky M, Voigt C and Yu Z 2020 Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw PNAS https://doi.org/10.1073/pnas.1916387117
in ’t Zandt MH, Liebner S & Welte CU (2020). Roles of Thermokarst Lakes in a Warming World. Trends in Microbiology. https://doi.org/10.1016/j.tim.2020.04.002
Keuper F, Wild B, Kummu M, Beer C, Blume-Werry G, Fontaine S, Gavazov K, Gentsch N, Guggenberger G, Hugelius G, Jalava M, Koven C, Krab E J, Kuhry P, Monteux S, Richter A, Shahzad T, Weedon JT and Dorrepaal E 2020 Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming Nature Geoscience 1–6 https://doi.org/10.1038/s41561-020-0607-0
Kou D, Yang G, Li F, Feng X, Zhang D, Mao C, Zhang Q, Peng Y, Ji C, Zhu Q, Fang Y, Liu X, Xu-Ri, Li S, Deng J, Zheng X, Fang J and Yang Y 2020 Progressive nitrogen limitation across the Tibetan alpine permafrost region Nature Communications 11 3331 https://doi.org/10.1038/s41467-020-17169-6
Kropp H, Loranty MM, Natali SM, Kholodov AL, Roch AV, Myers-Smith I, Abbott BW, Abermann J, Blanc-Betes E, Blok D, Blume-Werry G, Boike J, Breen AL, Cahoons SM, Christiansen CT, Douglas TA, Epstein HE, Frost GV, Goeckede M, Høye TT, Mamet ST, O’Donnell JA, Olefeldt D, Phoenix GK, Salmon VG, Sannel AB, Smith SL, Sonnentag O, Smith Vaughn L, Williams M, Elberling B, Gough L, Hjort J, Lafleur PM, Euskirchen ES, Heijmans MMPD, Humphreys ER, Iwata H, Jones BM, Jorgenson MT, Grünberg I, Kim Y, Laundre J, Mauritz M, Michelsen A, Schaepman-Strub G, Tape KD, Ueyama M, Lee B-Y, Langley K, Lund M (2020). Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems. Environmental Research Letters, 16(1), 015001. https://doi.org/10.1088/1748-9326/abc994
Leewis M-C, Berlemont R, Podgorski DC, Srinivas A, Zito P, Spencer RGM, McFarland J, Douglas TA, Conaway CH, Waldrop M and Mackelprang R 2020 Life at the Frozen Limit: Microbial Carbon Metabolism Across a Late Pleistocene Permafrost Chronosequence Front. Microbiol. 11 https://doi.org/10.3389/fmicb.2020.01753
Mao C, Kou D, Chen L, Qin S, Zhang D, Peng Y and Yang Y Permafrost nitrogen status and its determinants on the Tibetan Plateau Global Change Biology https://doi.org/10.1111/gcb.15205
Nitzbon J, Westermann S, Langer M, Martin LCP, Strauss J, Laboor S, & Boike J (2020). Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate. Nature Communications, 11(1), 2201. https://doi.org/10.1038/s41467-020-15725-8
Olid C, Klaminder J, Monteux S, Johansson M and Dorrepaal E Decade of experimental permafrost thaw reduces turnover of young carbon and increases losses of old carbon, without affecting the net carbon balance Global Change Biology https://doi.org/10.1111/gcb.15283
Opfergelt S (2020). The next generation of climate model should account for the evolution of mineral-organic interactions with permafrost thaw. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ab9a6d
Ricketts MP, Matamala R, Jastrow JD, Antonopoulos DA, Koval J, Ping C-L, Liang C and Gonzalez-Meler M A 2020 The effects of warming and soil chemistry on bacterial community structure in Arctic tundra soils Soil Biology and Biochemistry 148 107882 https://doi.org/10.1016/j.soilbio.2020.107882
Rodenhizer H, Ledman J, Mauritz M, Natali SM, Pegoraro E, Plaza C, Romano E, Schädel C, Taylor M, & Schuur EAG (2020). Carbon thaw rate doubles when accounting for subsidence in a permafrost warming experiment. Journal of Geophysical Research: Biogeosciences, 125(6), e2019JG005528. https://doi.org/10.1029/2019JG005528
Sayedi SS, Abbott BW, Thornton BF, Frederick JM, Vonk JE, Overduin P, Schädel C, Schuur EAG, Bourbonnais A, Demidov N, Gavrilov A, He S, Hugelius G, Jakobsson M, Jones MC, Joung D, Kraev G, Macdonald RW, McGuire AD, Mu C, O’Regan M, Schreiner KM, Stranne C, Pizhankov E, Vasiliev A, Westermann S, Zarnetske JP, Zhang T, Ghandehari M, Baeumler S, Brown BC, Frei RJ (2020). Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment. Environmental Research Letters, 15(12), 124075 https://doi.org/10.1088/1748-9326/abcc29
Schädel C, Beem-Miller J, Aziz Rad M, Crow SE, Hicks Pries CE, Ernakovich J, Hoyt AM, Plante A, Stoner S, Treat CC and Sierra CA 2020 Decomposability of soil organic matter over time: the Soil Incubation Database (SIDb, version 1.0) and guidance for incubation procedures Earth System Science Data 12 1511–24 https://doi.org/10.5194/essd-12-1511-2020
Schaefer K, Elshorbany Y, Jafarov E, Schuster P F, Striegl R G, Wickland K P and Sunderland E M 2020 Potential impacts of mercury released from thawing permafrost Nature Communications 11 4650 https://doi.org/10.1038/s41467-020-18398-5
Turetsky MR, Abbott BW, Jones MC, Anthony KW, Olefeldt D, Schuur EAG, Grosse G, Kuhry P, Hugelius G, Koven C, Lawrence DM, Gibson C, Sannel ABK, & McGuire AD (2020). Carbon release through abrupt permafrost thaw. Nature Geoscience, 13(2), 138–143. https://doi.org/10.1038/s41561-019-0526-0
Voigt C, Marushchak ME, Abbott BW, Biasi C, Elberling B, Siciliano SD, Sonnentag O, Stewart KJ, Yang Y and Martikainen PJ 2020 Nitrous oxide emissions from permafrost-affected soils Nature Reviews Earth & Environment 1–15 https://doi.org/10.1038/s43017-020-0063-9
Windirsch T, Grosse G, Ulrich M, Schirrmeister L, Fedorov AN, Konstantinov PY, Fuchs M, Jongejans LL, Wolter J, Opel T and Strauss J 2020 Organic carbon characteristics in ice-rich permafrost in alas and Yedoma deposits, central Yakutia, Siberia Biogeosciences 17 3797–814 https://doi.org/10.5194/bg-17-3797-2020
Arndt KA, Oechel WC, Goodrich JP, Bailey BA, Kalhori A, Hashemi J, Sweeney C and Zona D 2019 Sensitivity of Methane Emissions to Later Soil Freezing in Arctic Tundra Ecosystems Journal of Geophysical Research: Biogeosciences Online: https://doi.org/10.1029/2019JG005242
Biskaborn BK, Smith SL, Noetzli J, Matthes H, Vieira G, Streletskiy DA, Schoeneich P, Romanovsky VE, Lewkowicz AG, Abramov A, Allard M, Boike J, Cable WL, Christiansen HH, Delaloye R, Diekmann B, Drozdov D, Etzelmüller B, Grosse G, Guglielmin M, Ingeman-Nielsen T, Isaksen K, Ishikawa M, Johansson M, Johannsson H, Joo A, Kaverin D, Kholodov A, Konstantinov P, Kröger T, Lambiel C, Lanckman J-P, Luo D, Malkova G, Meiklejohn I, Moskalenko N, Oliva M, Phillips M, Ramos M, Sannel A BK, Sergeev D, Seybold C, Skryabin P, Vasiliev A, Wu Q, Yoshikawa K, Zheleznyak M and Lantuit H (2019) Permafrost is warming at a global scale Nature Communications 10, 264 https://doi.org/10.1038/s41467-018-08240-4
Finderup Nielsen T, Ravn NR and Michelsen A 2019 Increased CO2 efflux due to long-term experimental summer warming and litter input in subarctic tundra – CO2 fluxes at snowmelt, in growing season, fall and winter Plant Soil Online: https://doi.org/10.1007/s11104-019-04282-9
Fuchs M, Lenz J, Jock S, Nitze I, Jones B M, Strauss J, Günther F and Grosse G (2019) Organic Carbon and Nitrogen Stocks along a Thermokarst Lake Sequence in Arctic Alaska Journal of Geophysical Research: BiogeosciencesOnline: https://doi.org/10.1029/2018JG004591
Gibson CM, Estop-Aragonés C, Flannigan M, Thompson DK and Olefeldt D 2019 Increased deep soil respiration detected despite reduced overall respiration in permafrost peat plateaus following wildfire Environ. Res. Lett. 14 125001. doi:10.1088/1748-9326/ab4f8d
Heslop JK, Walter Anthony KM, Grosse G, Liebner S, & Winkel M (2019). Century-scale time since permafrost thaw affects temperature sensitivity of net methane production in thermokarst-lake and talik sediments. Science of The Total Environment, 691, 124–134. https://doi.org/10.1016/j.scitotenv.2019.06.402
Heslop JK, Winkel M, Anthony KMW, Spencer RGM, Podgorski DC, Zito P, Kholodov A, Zhang M, & Liebner S (2019). Increasing Organic Carbon Biolability With Depth in Yedoma Permafrost: Ramifications for Future Climate Change. Journal of Geophysical Research: Biogeosciences, 124(7), 2021–2038. https://doi.org/10.1029/2018JG004712
Knowles JF, Blanken PD, Lawrence CR and Williams MW (2019) Evidence for non-steady-state carbon emissions from snow-scoured alpine tundra Nature Communications 10 1306 https://doi.org/10.1038/s41467-019-09149-2
Kou D, Ding J, Li F, Wei N, Fang K, Yang G, Zhang B, Liu L, Qin S, Chen Y, Xia J and Yang Y (2019) Spatially-explicit estimate of soil nitrogen stock and its implication for land model across Tibetan alpine permafrost region Science of The Total Environment 650 1795–804. https://doi.org/10.1016/j.scitotenv.2018.09.252
Kwon MJ, Jung JY, Tripathi BM, Göckede M, Lee YK and Kim M (2019) Dynamics of microbial communities and CO2 and CH4 fluxes in the tundra ecosystems of the changing Arctic J Microbiol. Online: https://doi.org/10.1007/s12275-019-8661-2
Kwon MJ, Natali SM, Pries CEH, Schuur EAG, Steinhof A, Crummer KG, Zimov N, Zimov SA, Heimann M, Kolle O and Göckede M 2019 Drainage enhances modern soil carbon contribution but reduces old soil carbon contribution to ecosystem respiration in tundra ecosystems Global Change Biology Online: https://doi.org/10.1111/gcb.14578
Li Z, Xia J, Ahlström A, Rinke A, Koven C, Hayes DJ, Ji D, Geli Zhang, Krinner G, Chen G, Cheng W, Dong J, Liang J, Moore JC, Lifen Jiang, Yan L, Ciais P, Peng S, Wang Y-P, Xiao X, Shi Z, McGuire AD and Luo Y 2018 Non-uniform seasonal warming regulates vegetation greening and atmospheric CO2 amplification over northern lands Environ. Res. Lett. 13 124008 https://doi.org/10.1088/1748-9326/aae9ad
Liu F, Kou D, Abbott BW, Mao C, Chen Y, Chen L and Yang Y Disentangling the Effects of Climate, Vegetation, Soil and Related Substrate Properties on the Biodegradability of Permafrost-Derived Dissolved Organic Carbon Journal of Geophysical Research: Biogeosciences. doi:10.1029/2018JG004944
Martens J, Wild B, Pearce C, Tesi T, Andersson A, Bröder L, O’Regan M, Jakobsson M, Sköld M, Gemery L, Cronin TM, Semiletov I, Dudarev OV and Gustafsson Ö 2019 Remobilization of Old Permafrost Carbon to Chukchi Sea Sediments During the End of the Last Deglaciation Global Biogeochemical Cycles 33 2–14 https://doi.org/10.1029/2018GB005969
Matamala R, Jastrow JD, Calderón FJ, Liang C, Fan Z, Michaelson GJ and Ping C-L 2019 Predicting the decomposability of arctic tundra soil organic matter with mid infrared spectroscopy Soil Biology and Biochemistry 129 1–12 https://doi.org/10.1016/j.soilbio.2018.10.014
Mauritz M, Celis G, Ebert C, Hutchings J, Ledman J, Natali SM, Pegoraro E, Salmon VG, Schädel C, Taylor M and Schuur EAG 2019 Using Stable Carbon Isotopes of Seasonal Ecosystem Respiration to Determine Permafrost Carbon Loss Journal of Geophysical Research: Biogeosciences https://doi.org/10.1029/2018JG004619
Natali SM, Watts JD, Rogers BM, Potter S, Ludwig SM, Selbmann A.-K, Sullivan PF, Abbott BW, Arndt KA, Birch L, Björkman MP, Bloo, AA, Celis G, Christensen TR, Christiansen CT, Commane R, Cooper EJ, Crill P, Czimczik C, Davydov S, Du J, Egan JE, Elberling B, Euskirchen ES, Friborg T, Genet H, Göckede M, Goodrich JP, Grogan P, Helbig M, Jafarov EE, Jastrow JD, Kalhori AAM, Kim Y, Kimball JS, Kutzbach L, Lara MJ, Larsen KS, Lee B.-Y, Liu Z, Loranty MM, Lund M, Lupascu M, Madani N, Malhotra A, Matamala R, McFarland J, McGuire AD, Michelsen A, Minions C, Oechel WC, Olefeldt D, Parmentier F.-JW, Pirk N, Poulter B, Quinton W, Rezanezhad F, Risk D, Sachs T, Schaefer K, Schmidt NM, Schuur EAG, Semenchuk PR, Shaver G, Sonnentag O, Starr G, Treat CC, Waldrop MP, Wang Y, Welker J, Wille C, Xu X, Zhang Z, Zhuang Q, and Zona D. 2019 Large loss of CO2 in winter observed across the northern permafrost region, Nature Climate Change, 1–6, doi:10.1038/s41558-019-0592-8, 2019.
Neumann RB, Moorberg CJ, Lundquist JD, Turner JC, Waldrop MP, McFarland JW, Euskirchen ES, Edgar CW and Turetsky MR Warming effects of spring rainfall increase methane emissions from thawing permafrost Geophysical Research Letters https://doi.org/10.1029/2018GL081274
O’Donnell JA, Carey MP, Koch JC, Xu X, Poulin BA, Walker J and Zimmerman CE 2019 Permafrost Hydrology Drives the Assimilation of Old Carbon by Stream Food Webs in the Arctic Ecosystems Online: https://doi.org/10.1007/s10021-019-00413-6
Pegoraro E, Mauritz M, Bracho R, Ebert C, Dijkstra P, Hungate BA, Konstantinidis K T, Luo Y, Schädel C, Tiedje JM, Zhou J and Schuur EAG 2018 Glucose addition increases the magnitude and decreases the age of soil respired carbon in a long-term permafrost incubation study Soil Biology and Biochemistry Online: https://doi.org/10.1016/j.soilbio.2018.10.009
Plaza C, Pegoraro E, Bracho R, Celis G, Crummer KG, Hutchings JA, Pries CEH, Mauritz M, Natali SM, Salmon VG, Schädel C, Webb EE and Schuur EAG 2019 Direct observation of permafrost degradation and rapid soil carbon loss in tundra Nature Geoscience. doi:10.1038/s41561-019-0387-6
Tanski G, Wagner D, Knoblauch C, Fritz M, Sachs T and Lantuit H 2019 Rapid CO2 Release From Eroding Permafrost in Seawater Geophysical Research Letter. doi:10.1029/2019GL084303
Teufel B and Sushama L 2019 Abrupt changes across the Arctic permafrost region endanger northern development Nat. Clim. Chang. 9 858–62. doi:10.1038/s41558-019-0614-6
Turetsky MR, Abbott BW, Jones MC, Anthony KW, Olefeldt D, Schuur EAG, Koven C, McGuire AD, Grosse G, Kuhry P, Hugelius G, Lawrence DM, Gibson C and Sannel ABK 2019 Permafrost collapse is accelerating carbon release Nature 569 32. doi: 10.1038/d41586-019-01313-4
Virkkala A-MI, Abdi AM, Luoto M and Metcalfe D 2019 Identifying multidisciplinary research gaps across Arctic terrestrial gradients Environ. Res. Lett. Online: doi:10.1088/1748-9326/ab4291
Voigt C, Marushchak ME, Mastepanov M, Lamprecht RE, Christensen TR, Dorodnikov M, Jackowicz‐Korczyński M, Lindgren A, Lohila A, Nykänen H, Oinonen M, Oksanen T, Palonen V, Treat CC, Martikainen PJ and Biasi C 2019 Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw Global Change Biology: https://doi.org/10.1111/gcb.14574
Walker XJ, Baltzer JL, Cumming SG, Day NJ, Ebert C, Goetz S, Johnstone JF, Potter S, Rogers BM, Schuur EAG, Turetsky MR and Mack MC 2019 Increasing wildfires threaten historic carbon sink of boreal forest soils Nature 572 520–3. doi:10.1038/s41586-019-1474-y
Wild B, Andersson A, Bröder L, Vonk J, Hugelius G, McClelland J W, Song W, Raymond PA and Gustafsson Ö 2019 Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost PNAS 116 10280–5. doi:10.1073/pnas.1811797116
back to top
Boike J, Juszak I, Lange S, Chadburn S, Burke E, Overduin PP, Roth K, Ippisch O, Bornemann N, Stern L, Gouttevin I, Hauber E, Westermann S (2018) A 20-year record (1998--2017) of permafrost, active layer and meteorological conditions at a high Arctic permafrost research site (Bayelva, Spitsbergen). Earth System Science Data, 10, 355–390. https://doi.org/10.5194/essd-10-355-2018
Burke EJ, Chadburn SE, Huntingford C, Jones CD (2018) CO2 loss by permafrost thawing implies additional emissions reductions to limit warming to 1.5 or 2 °C. Environmental Research Letters, 13, 24024. https://doi.org/10.1088/1748-9326/aaa138
Chen L, Liu L, Mao C, Qin S, Wang J, Liu F, Blagodatsky S, Yang G, Zhang Q, Zhang D, Yu J and Yang Y (2018) Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency Nature Communications 9 3951 https://doi.org/10.1038/s41467-018-06232-y
Christiansen CT, Lafreniére MJ, Henry GHR, Grogan P (2018) Long-term deepened snow promotes tundra evergreen shrub growth and summertime ecosystem net CO2 gain, but reduces soil carbon and nutrient pools. Global Change Biology. doi: 10.1111/gcb.14084
Couture NJ, Irrgang A, Pollard W, Lantuit H, Fritz M (2018) Coastal Erosion of Permafrost Soils Along the Yukon Coastal Plain and Fluxes of Organic Carbon to the Canadian Beaufort Sea. Journal of Geophysical Research: Biogeosciences. doi: 10.1002/2017JG004166
Dean JF, van der Velde Y, Garnett MH, Dinsmore K, Baxter R, Lessels JS, Smith P, Street LE, Subke JA, Tetzlaff D, Washbourne I, Wookey PA, Billett MF (2018) Abundant pre-industrial carbon detected in Canadian Arctic headwaters: implications for the permafrost carbon feedback. Environmental Research Letters, 13, 34024. https://doi.org/10.1088/1748-9326/aaa1fe
Estop-Aragonés C, Cooper MDA, Fisher JP, Thierry A, Garnett MH, Charman DJ, Murton JB, Phoenix GK, Treharne R, Sanderson NK, Burn CR, Kokelj S V, Wolfe SA, Lewkowicz AG, Williams M, Hartley IP (2018) Limited release of previously-frozen C and increased new peat formation after thaw in permafrost peatlands. Soil Biology and Biochemistry, 118, 115–129. https://doi.org/10.1016/j.soilbio.2017.12.010
Estop-Aragonés C, Czimczik C I, Heffernan L, Gibson C, Walker J C, Xiaomei Xu and Olefeldt D (2018) Respiration of aged soil carbon during fall in permafrost peatlands enhanced by active layer deepening following wildfire but limited following thermokarst Environ. Res. Lett. 13 085002. https://doi.org/10.1088/1748-9326/aad5f0
Faucherre S, Jørgensen CJ, Blok D, Weiss N, Siewert MB, Bang‐Andreasen T, Hugelius G, Kuhry P, Elberling B (2018) Short and Long‐Term Controls on Active Layer and Permafrost Carbon Turnover Across the Arctic. Journal of Geophysical Research: Biogeosciences, 123, 372–390. https://doi.org/10.1002/2017JG004069
Franz D, Mammarella I, Boike J, Kirillin G, Vesala T, Bornemann N, Larmanou E, Langer M, Sachs T (2018) Lake-Atmosphere Heat Flux Dynamics of a Thermokarst Lake in Arctic Siberia. Journal of Geophysical Research: Atmospheres, 123, 5222–5239. https://doi.org/10.1029/2017JD027751
Fuchs M, Grosse G, Strauss J, Günther F, Grigoriev M, Maximov GM, Hugelius G (2018) Carbon and nitrogen pools in thermokarst-affected permafrost landscapes in Arctic Siberia. Biogeosciences, 15, 953–971. https://doi.org/10.5194/bg-15-953-2018, 2018
Fuchs M, Grosse G, Jones BM, Strauss J, Baughman CA and Walker D A (2018) Sedimentary and geochemical characteristics of two small permafrost-dominated Arctic river deltas in northern Alaska Arktos 4 20
Gasser T, Kechiar M, Ciais P, Burke EJ, Kleinen T, Zhu D, Huang Y, Ekici A and Obersteiner M (2018) Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release Nature Geoscience. https://doi.org/10.1038/s41561-018-0227-0
Jongejans LL, Strauss J, Lenz J, Peterse F, Mangelsdorf K, Fuchs M and Grosse G (2018) Organic matter characteristics in yedoma and thermokarst deposits on Baldwin Peninsula, west Alaska Biogeosciences 15 6033–48. https://doi.org/10.5194/bg-15-6033-2018
Kleinen T and Brovkin V (2018) Pathway-dependent fate of permafrost region carbon Environ. Res. Lett. 13 094001. https://doi.org/10.1088/1748-9326/aad824
Knoblauch C, Beer C, Liebner S, Grigoriev MN, Pfeiffer E-M (2018) Methane production as key to the greenhouse gas budget of thawing permafrost. Nature Climate Change.8, 309-312. doi:10.1038/s41558-018-0095-z
Kuhn M, Lundin EJ, Giesler R, Johansson M and Karlsson J (2018) Emissions from thaw ponds largely offset the carbon sink of northern permafrost wetlands Scientific Reports 8 9535. doi: 10.1038/s41598-018-27770-x
Lara MJ, Nitze I, Grosse G, Martin P, McGuire AD (2018) Reduced arctic tundra productivity linked with landform and climate change interactions. Scientific Reports, 8, 2345. doi:10.1038/s41598-018-20692-8
Liang J, Xia J, Shi Z, Jiang L, Ma S, Lu X, Mauritz M, Natali SM, Pegoraro E, Penton CR, Plaza C, Salmon VG, Celis G, Cole JR, Konstantinidis KT, Tiedje JM, Zhou ji, Schuur EAG, Luo Y (2018) Biotic responses buffer warming‐induced soil organic carbon loss in Arctic tundra. Global Change Biology, https://doi.org/10.1111/gcb.14325
Lindgren A, Hugelius G & Kuhry P (2018). Extensive loss of past permafrost carbon but a net accumulation into present-day soils. Nature, https://doi.org/10.1038/s41586-018-0371-0
Liu F, Chen L, Zhang B, Wang G, Qin S, Yang Y (2018) Ultraviolet radiation rather than inorganic nitrogen increases dissolved organic carbon biodegradability in a typical thermo-erosion gully on the Tibetan Plateau. Science of The Total Environment, 627, 1276–1284. https://doi.org/10.1016/j.scitotenv.2018.01.275
Liu F, Chen L, Abbott B W, Xu Y, Yang G, Kou D, Qin S, Jens Strauss, Wang Y, Zhang B and Yang Y 2018 Reduced quantity and quality of SOM along a thaw sequence on the Tibetan Plateau Environ. Res. Lett. 13 104017. https://doi.org/10.1088/1748-9326/aae43b
Loranty MM, Berner LT, Taber ED, Kropp H, Natali SM, Alexander HD, Davydov SP, Zimov NS (2018) Understory vegetation mediates permafrost active layer dynamics and carbon dioxide fluxes in open-canopy larch forests of northeastern Siberia. PLOS ONE, 13, e0194014. https://doi.org/10.1371/journal.pone.0194014
Loranty MM, Abbott BW, Blok D, Douglas TA, Epstein HE, Forbes BC, Jones BM, Kholodov AL, Kropp H, Malhotra A, Mamet SD, Myers-Smith IH, Natali SM, O’Donnell JA, Phoenix GK, Rocha AV, Sonnentag O, Tape KD and Walker DA 2018 Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions Biogeosciences 15 5287–313. https://doi.org/10.5194/bg-15-5287-2018
Lupascu M, Czimczik CI, Welker MC, Ziolkowski LA, Cooper EJ and Welker JM 2018 Winter ecosystem respiration and sources of CO2 from the High Arctic tundra of Svalbard: Response to a deeper snow experiment Journal of Geophysical Research: Biogeosciences, 123. doi: 10.1029/2018JG004396
Malhotra A, Moore TR, Limpens J, Roulet NT (2018) Post-thaw variability in litter decomposition best explained by microtopography at an ice-rich permafrost peatland. Arctic, Antarctic, and Alpine Research, 50, e1415622. doi:10.1080/15230430.2017.1415622
McGuire AD, Lawrence DM, Koven CD, Clein J, Burke EJ, Chen G, Jafarov E, MacDougall A, Marchenko S, Nicolsky D, Peng S-S, Rinke A, Ciais P, Gouttevin I, Hayes D, Ji D, Krinner G, Moore J, Romanovsky V, Schädel C, Schaefer K, Schuur EAG, Zhuang Q (2018) The dependence of the evolution of carbon dynamics in the Northern Permafrost Region on the trajectory of climate change Proceedings of the National Academy of Sciences, 115, (15), 3882-3887 https://doi.org/10.1073/pnas.1719903115
McGuire AD, Genet H, Lyu Z, Pastick N, Stackpoole S, Birdsey R, D’Amore D, He Y, Rupp TS, Striegl R, Wylie BK, Zhou X, Zhuang Q and Zhu Z 2018 Assessing Historical and Projected Carbon Balance of Alaska: A Synthesis of Results and Policy/Management Implications Ecological Applications doi: 10.1002/eap.1768
Monteux S, Weedon JT, Blume-Werry G, Gavazov K, Jassey VEJ, Johansson M, Keuper F, Olid C and Dorrepaal E 2018 Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration The ISME Journal Online 12, 2129-2141. doi: 10.1038/s41396-018-0176-z
Nitze I, Grosse G, Jones B M, Romanovsky V E and Boike J 2018 Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic Nature Communications 9 5423. doi: 10.1038/s41467-018-07663-3
Palmtag J, Kuhry P (2018) Grain size controls on cryoturbation and soil organic carbon density in permafrost‐affected soils. Permafrost and Periglacial Processes, 29, 112–120. https://doi.org/10.1002/ppp.1975
Parazoo NC, Koven CD, Lawrence DM, Romanovsky V, Miller CE (2018) Detecting the permafrost carbon feedback: talik formation and increased cold-season respiration as precursors to sink-to-source transitions. The Cryosphere, 12, 123–144. https://doi.org/10.5194/tc-12-123-2018
Ramage JL, Irrgang AM, Morgenstern A, Lantuit H (2018) Increasing coastal slump activity impacts the release of sediment and organic carbon into the Arctic Ocean. Biogeosciences, 15, 1483–1495. https://doi.org/10.1111/gcb.14325
Salmon VG, Schädel C, Bracho R, Pegoraro E, Celis G, Mauritz M, Mack MC and Schuur EAG (2018) Adding Depth to Our Understanding of Nitrogen Dynamics in Permafrost Soils Journal of Geophysical Research: Biogeosciences Online. https://doi.org/10.1029/2018JG004518
Schädel C, Koven CD, Lawrence DM, Celis G, Garnello AJ, Hutchings J, Mauritz M, Natali SM, Pegoraro E, Rodenhizer H, Salmon VG, Taylor MA, Webb EE, Wieder WR and Schuur EAG 2018 Divergent patterns of experimental and model-derived permafrost ecosystem carbon dynamics in response to Arctic warming Environ. Res. Lett. 13 105002. https://doi.org/10.1088/1748-9326/aae0ff
Schirrmeister L, Grigoriev MN, Strauss J, Grosse G, Overduin PP, Kholodov A, Guenther F, Hubberten H-W (2018) Sediment characteristics of a thermokarst lagoon in the northeastern Siberian Arctic (Ivashkina Lagoon, Bykovsky Peninsula). arktos, 4, 13. doi:10.1007/s41063-018-0049-8
Schuster PF, Schaefer KM, Aiken GR, Antweiler RC, Dewild JF, Gryziec JD, Gusmeroli A, Hugelius G, Jafarov E, Krabbenhoft DP, Liu L, Herman-Mercer N, Mu C, Roth DA, Schaefer T, Striegl RG, Wickland KP, Zhang T (2018) Permafrost Stores a Globally Significant Amount of Mercury. Geophysical Research Letters. doi: 10.1002/2017GL075571
Schuur EAG and Mack MC 2018 Ecological Response to Permafrost Thaw and Consequences for Local and Global Ecosystem Services Annual Review of Ecology, Evolution, and Systematics 49 279–301. https://doi.org/10.1146/annurev-ecolsys-121415-032349
Schuur EAG, McGuire AD, Romanovsky V, Schädel C and Mack M C 2018 Chapter 11: Arctic and boreal carbon. In: Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report ed N Cavallaro, G Shrestha, R Birdsey, M A Mayes, R G Najjar, S C Reed, P Romero-Lankao and Z Zhu (Washington, DC, USA: U.S. Global Change Research Program) pp 428–68 Online: https://doi.org/10.7930/SOCCR2.2018.Ch11
Siewert MB (2018) High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: a case study in a sub-Arctic peatland environment. Biogeosciences, 15, 1663–1682. doi:10.5194/bg-15-1663-2018
Stapel JG, Schwamborn G, Schirrmeister L, Horsfield B, Mangelsdorf K (2018) Substrate potential of last interglacial to Holocene permafrost organic matter for future microbial greenhouse gas production. Biogeosciences, 15, 1969–1985. doi:10.5194/bg-15-1969-2018
Taylor MA, Celis G, Ledman J D, Bracho R and Schuur E a. G 2018 Methane Efflux Measured by Eddy Covariance in Alaskan Upland Tundra Undergoing Permafrost Degradation Journal of Geophysical Research: Biogeosciences 123 (9) 2695-2710 https://doi.org/10.1029/2018JG004444
Treat CC, Bloom AA, Marushchak ME (2018) Nongrowing season methane emissions–a significant component of annual emissions across northern ecosystems. Global Change Biology, doi:10.1111/gcb.14137
Treat CC & Jones MC (2018). Near-surface permafrost aggradation in Northern Hemisphere peatlands shows regional and global trends during the past 6000 years. The Holocene, 28(6), 998–1010. https://doi.org/10.1177/0959683617752858
Tripathi BM, Kim M, Kim Y, Byun E, Yang J-W, Ahn J, Lee YK (2018) Variations in bacterial and archaeal communities along depth profiles of Alaskan soil cores. Scientific Reports, 8, 504. doi:10.1038/s41598-017-18777-x
Walter Anthony K, Deimling TS von, Nitze I, Frolking S, Emond A, Daanen R, Anthony P, Lindgren P, Jones B and Grosse G 2018 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes Nature Communications 9 3262. doi: 10.1038/s41467-018-05738-9
Walz J, Knoblauch C, Tigges R, Opel T, Schirrmeister L and Pfeiffer E-M 2018 Greenhouse gas production in degrading ice-rich permafrost deposits in northeastern Siberia Biogeosciences 15 5423–36. https://doi.org/10.5194/bg-15-5423-2018
Wang K, Jafarov E, Overeem I, Romanovsky V, Schaefer K, Clow G, Urban F, Cable W, Piper M, Schwalm C, Zhang T, Kholodov A, Sousanes P, Loso M and Hill K (2018) A synthesis dataset of permafrost-affected soil thermal conditions for Alaska, USA Earth System Science Data 10 2311–28 https://doi.org/10.5194/essd-10-2311-2018
Wickland KP, Waldrop MP, Aiken GR, Koch JC, and Striegl RG, 2018, Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska, Environ. Res. Lett., 13 065011, doi: 10.1088/1748-9326/aac4ad
Wild B, Alves RJE, Bárta J, Čapek P, Gentsch N, Guggenberger G, Hugelius G, Knoltsch A, Kuhry P, Lashchinksiy N, Mikutta R, Palmtag J, Prommer J, Schnecker J, Shibistova O, Takriti M, Urich T, Richter A (2018) Amino acid production exceeds plant nitrogen demand in Siberian tundra. Environmental Research Letters, 13, 34002. https://doi.org/10.1088/1748-9326/aaa4fa
Wilkman E, Zona D, Tang Y, Gioli B, Lipson DA and Oechel W 2018 Temperature response of respiration across the heterogeneous landscape of the Alaskan Arctic tundra Journal of Geophysical Research: Biogeosciences, 123, 2287–2302. doi: 10.1029/2017JG004227
Winkel M, Mitzscherling J, Overduin PP, Horn F, Winterfeld M, Rijkers R, Grigoriev MN, Knoblauch C, Mangelsdorf K, Wagner D, Liebner S (2018) Anaerobic methanotrophic communities thrive in deep submarine permafrost. Scientific Reports, 8, 1291. doi:10.1038/s41598-018-19505-9
Yang G, Peng Y, Olefeldt D, Chen Y, Wang G, Li F, Zhang D, Wang J, Yu J, Liu L, Qin S, Sun T, Yang Y (2018) Changes in Methane Flux along a Permafrost Thaw Sequence on the Tibetan Plateau. Environmental Science & Technology, 52, 1244–1252. doi: 10.1021/acs.est.7b04979
Yang G, Peng Y, Marushchak M E, Chen Y, Wang G, Li F, Zhang D, Wang J, Yu J, Liu L, Qin S, Kou D and Yang Y 2018 Magnitude and Pathways of Increased Nitrous Oxide Emissions from Uplands Following Permafrost Thaw Environ. Sci. Technol. 52 9162–9. doi: 10.1021/acs.est.8b02271
Zheng J, RoyChowdhury T, Yang Z, Gu B, Wullschleger SD and Graham DE 2018 Impacts of temperature and soil characteristics on methane production and oxidation in Arctic tundra Biogeosciences 15 6621–35. https://doi.org/10.5194/bg-15-6621-2018
back to top
Andresen CG, Lara MJ, Tweedie CE, Lougheed VL (2017) Rising plant-mediated methane emissions from arctic wetlands. Global Change Biology, 23, 1128-1139. doi:10.1111/gcb.13469
Burke EJ, Ekici A, Huang Y, Chadburn SE, Huntingford C, Ciais P, Friedlingstein P, Peng S, Krinner G (2017). Quantifying uncertainties of permafrost carbon–climate feedbacks. Biogeosciences, 14(12), 3051-3066. doi:10.5194/bg-14-3051-2017
Camill P, Umbanhowar CE, Geiss C, Edlund MB, Hobbs WO, Dupont A, Doyle-Capitman C, Ramos M (2017) The initiation and development of small peat-forming ecosystems adjacent to lakes in the north central Canadian low arctic during the Holocene. Journal of Geophysical Research: Biogeosciences, 122, 1672–1688. doi:10.1002/2016JG003662
Celis G, Mauritz M, Bracho R, Salmon VG, Webb EE, Hutchings J, Natali SM, Schädel C, Crummer KG, Schuur EAG (2017). Tundra is a consistent source of CO2 at a site with progressive permafrost thaw during six years of chamber and eddy covariance measurements. Journal of Geophysical Research: Biogeosciences. doi:10.1002/2016JG003671
Chadburn SE, Burke EJ, Cox PM, Friedlingstein P, Hugelius G, Westermann S (2017) An observation-based constraint on permafrost loss as a function of global warming. Nature Clim. Change, https://doi.org/10.1038/nclimate3262
Chadburn SE, Krinner G, Porada P, Bartsch A, Beer C, Belelli Marchesini L, Boike J, Ekici A, Elberling B, Friborg T, Hugelius G, Johansson M, Kuhry P, Kutzbach L, Langer M, Lund M, Parmentier F-JW, Peng S, Van Huissteden K et al. (2017) Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models. Biogeosciences, 14, 5143–5169. https://doi.org/10.5194/bg-14-5143-2017
Commane R, Lindaas J, Benmergui J, Luus KA, Chang RY-W, Daube BC, Euskirchen ES, Henderson JM, Karion A, Miller JB, Miller SM, Parazoo NC, Randerson JT, Sweeney C, Tans P, Thoning K, Veraverbeke S, Miller CE, Wofsy SC (2017) Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.161856711
Cooper MDA, Estop-Aragones C, Fisher JP, Thierry A, Garnett MH, Charman DJ, Murton B, Phoenix GK, Treharne R, Kokelj SV, Wolfe SA, Lewkowicz AG, Williams M and Hartley IP. (2017). Limited contribution of permafrost carbon to methane release from thawing peatlands. Nature Clim. Change, advance online publication
Ding J, Chen L, Ji C, Hugelius G, Li Y, Liu L, Qin S, Zhang B, Yang G, Li F, Fang K, Chen Y, Peng Y, Zhao X, He H, Smith P, Fang J, Yang Y (2017) Decadal soil carbon accumulation across Tibetan permafrost regions. Nature Geosci, advance online publication
Euskirchen ES, Edgar CW, Syndonia Bret-Harte M, Kade A, Zimov N, Zimov S Interannual and Seasonal Patterns of Carbon Dioxide, Water, and Energy Fluxes From Ecotonal and Thermokarst-Impacted Ecosystems on Carbon-Rich Permafrost Soils in Northeastern Siberia. Journal of Geophysical Research: Biogeosciences, doi: 10.1002/2017JG004070
Harden JW, Sanderman J, Hugelius G (2017) Soils and the Carbon Cycle. In: International Encyclopedia of Geography: People, the Earth, Environment and Technology. John Wiley & Sons, Ltd. doi: 10.1002/9781118786352.wbieg1124
Helbig M, Chasmer LE, Desai AR, Kljun N, Quinton WL, Sonnentag O (2017a) Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest–wetland landscape. Global Change Biology, 23, 3231–3248. doi: 10.1111/gcb.13638
Helbig M, Chasmer LE, Kljun N, Quinton WL, Treat CC, Sonnentag O (2017b) The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape. Global Change Biology, 23, 2413–2427. doi: 10.1111/gcb.13520
Kanevskiy M, Shur Y, Jorgenson T, Brown DRN, Moskalenko NG, Brown J, Walker DA, Raynolds MK, Buchhorn M (2017) Degradation and stabilization of ice wedges: Implications for assessing risk of thermokarst in northern Alaska. Geomorphology 297 (2017) 20–42. https://doi.org/10.1016/j.geomorph.2017.09.001
Kohnert K, Serafimovich A, Metzger S, Hartmann J, Sachs T (2017) Strong geologic methane emissions from discontinuous terrestrial permafrost in the Mackenzie Delta, Canada. Scientific Reports, 7, 5828. doi:10.1038/s41598-017-05783-2
Koven CD, Hugelius G, Lawrence DM, Wieder WR (2017) Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nature Clim. Change, 7, 817–822. doi:10.1038/nclimate3421
Li F, Peng Y, Natali SM, Chen K, Han T, Yang G, Ding J, Zhang D, Wang G, Wang J, Yu J, Liu F, Yang Y Warming effects on permafrost ecosystem carbon fluxes associated with plant nutrients. Ecology, doi: 10.1002/ecy.1975
Mackelprang R, Burkert A, Haw M, Mahendrarajah T, Conaway CH, Douglas TA, Waldrop MP (2017) Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME J, doi:10.1038/ismej.2017.93
Matamala R, Calderón FJ, Jastrow JD, Fan Z, Hofmann SM, Michaelson GJ, Mishra U, Ping C-L (2017) Influence of site and soil properties on the DRIFT spectra of northern cold-region soils. Geoderma, 305, 80–91. https://doi.org/10.1016/j.geoderma.2017.05.014
Mauritz M, Bracho R, Celis G, Hutchings J, Natali SM, Pegoraro E, Salmon VG, Schädel C, Webb EE, Schuur EAG (2017) Non-linear CO2 flux response to seven years of experimentally induced permafrost thaw. Global Change Biology. doi:10.1111/gcb.13661
Melvin AM, Celis G, Johnstone JF, McGuire AD, Genet H, Schuur EAG, Rupp TS, Mack MC Fuel-reduction management alters plant composition, carbon and nitrogen pools, and soil thaw in Alaskan boreal forest. Ecological Applications. doi: 10.1002/eap.1636
Mitzscherling J, Winkel M, Winterfeld M, Horn F, Yang S, Grigoriev MN, Wagner D, Overduin PP, Liebner S (2017) The development of permafrost bacterial communities under submarine conditions. Journal of Geophysical Research: Biogeosciences, 122, 1689–1704. doi:10.1002/2017JG003859
Muster S, Roth K, Langer M, Lange S, Cresto Aleina F, Bartsch A, Morgenstern A, Grosse G, Jones B, Sannel ABK, Sjöberg Y, Günther F, Andresen C, Veremeeva A, Lindgren PR, Bouchard F, Lara MJ, Fortier D, Charbonneau S, Virtanen TA, Hugelius G, Palmtag J, Siewert MB, Riley WJ, Koven CD, Boike J (2017) PeRL: a circum-Arctic Permafrost Region Pond and Lake database. Earth Syst. Sci. Data, 9, 317-348. https://doi.org/10.5194/essd-9-317-2017
Mu CC, Abbott BW, Zhao Q, Su H, Wang SF, Wu QB, Zhang TJ, Wu XD Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai-Tibetan Plateau. Geophysical Research Letters, doi:10.1002/2017GL074338
Mu CC, Wu X, Zhao Q, Smoak JM, Yang Y, Hu L, Zhong W, Liu G, Xu H, Zhang T Relict Mountain Permafrost Area (Loess Plateau, China) Exhibits High Ecosystem Respiration Rates and Accelerating Rates in Response to Warming. Journal of Geophysical Research: Biogeosciences. doi:10.1002/2017JG004060
Mueller CW, Hoeschen C, Steffens M, Buddenbaum H, Hinkel K, Bockheim JG, Kao-Kniffin J (2017) Microscale soil structures foster organic matter stabilization in permafrost soils. Geoderma, 293, 44–53. https://doi.org/10.1016/j.geoderma.2017.01.028
Parmentier F-JW, Christensen TR, Rysgaard S, Bendtsen J, Glud RN, Else B, van Huissteden J, Sachs T, Vonk JE, Sejr MK (2017) A synthesis of the arctic terrestrial and marine carbon cycles under pressure from a dwindling cryosphere. Ambio, 46, 53-69. doi:10.1007/s13280-016-0872-8
Ruppel CD, Kessler JD (2017) The interaction of climate change and methane hydrates. Reviews of Geophysics. doi:10.1002/2016RG000534
Salzmann N, Gärtner-Roer I (2017) Climate Change and Permafrost. In: International Encyclopedia of Geography: People, the Earth, Environment and Technology. John Wiley & Sons, Ltd. doi: 10.1002/9781118786352.wbieg1124
Shelef E, Rowl JC, Wilson CJ, Hilley GE, Mishra U, Altmann GL, Ping C-L Large Uncertainty in Permafrost Carbon Stocks due to Hillslope Soil Deposits. Geophysical Research Letters. doi:10.1002/2017GL073823
Stegen JC, Anderson CG, Bond-Lamberty B, Crump AR, Chen X, Hess N (2017) Soil respiration across a permafrost transition zone: spatial structure and environmental correlates. Biogeosciences, 14, 4341–4354 https://doi.org/10.5194/bg-14-4341-2017
Strauss J, Schirrmeister L, Grosse G, Fortier D, Hugelius G, Knoblauch C, Romanovsky V, Schädel C, von Deimling TS, Schuur EAG, Shmelev D, Ulrich M, Veremeeva A Deep Yedoma permafrost: A synthesis of depositional characteristics and carbon vulnerability. Earth-Science Reviews. https://doi.org/10.1016/j.earscirev.2017.07.007
Tarnocai C, Bockheim JG (2017) Soils of Cold and Permafrost-Affected Landscapes. In: International Encyclopedia of Geography: People, the Earth, Environment and Technology. John Wiley & Sons, Ltd. doi: 10.1002/9781118786352.wbieg0563
Virkkala A-M, Virtanen T, Lehtonen A, Rinne J, Luoto M (2017) The current state of CO2 flux chamber studies in the Arctic tundra: a review. Progress in Physical Geography, 309133317745784. https://doi.org/10.1177/0309133317745784
Vitharana UWA, Mishra U, Jastrow JD, Matamala R, Fan Z (2017) Observational needs for estimating Alaskan soil carbon stocks under current and future climate. Journal of Geophysical Research: Biogeosciences. doi:10.1002/2016JG003421
Voigt C, Marushchak ME, Lamprecht RE, Jackowicz-Korczyński M, Lindgren A, Mastepanov M, Granlund L, Christensen TR, Tahvanainen T, Martikainen PJ, Biasi C (2017). Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw. Proceedings of the National Academy of Sciences, 114(24), 6238-6243. doi:10.1073/pnas.1702902114
Wang W, & Roulet N (2017). Comparison of plant litter and peat decomposition changes with permafrost thaw in a subarctic peatland. Plant and Soil, 1-20. doi:10.1007/s11104-017-3252-7
Walz J, Knoblauch C, Böhme L, Pfeiffer E-M (2017) Regulation of soil organic matter decomposition in permafrost-affected Siberian tundra soils - Impact of oxygen availability, freezing and thawing, temperature, and labile organic matter. Soil Biology and Biochemistry, 110, 34-43. http://dx.doi.org/10.1016/j.soilbio.2017.03.001
Webb EE, Heard K, Natali SM, Bunn AG, Alexander HD, Berner LT, Kholodov A, Loranty MM, Schade JD, Spektor V, Zimov N (2017) Variability in above- and belowground carbon stocks in a Siberian larch watershed. Biogeosciences, 14, 4279–4294. https://doi.org/10.5194/bg-14-4279-2017
Wilson RM, Fitzhugh L, Whiting GJ, Frolking S, Harrison MD, Dimova N, Burnett WC, Chanton JP (2017) Greenhouse gas balance over thaw-freeze cycles in discontinuous zone permafrost. Journal of Geophysical Research: Biogeosciences. doi:10.1002/2016JG003600
Xia J, McGuire AD, Lawrence D, Burke E, Chen G, Chen X, Delire C, Koven C, MacDougall A, Peng S, Rinke A, Saito K, Zhang W, Alkama R, Bohn TJ, Ciais P, Decharme B, Gouttevin I, Hajima T, Hayes DJ, Huang K, Ji D, Krinner G, Lettenmaier DP, Miller PA, Moore JC, Smith B, Sueyoshi T, Shi Z, Yan L, Liang J, Jiang L, Zhang Q, Luo Y (2017) Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region. Journal of Geophysical Research: Biogeosciences, 122, 430-446. doi:10.1002/2016JG003384
Yu Q, Epstein H, Engstrom R, Walker D (2017) Circumpolar arctic tundra biomass and productivity dynamics in response to projected climate change and herbivory. Global Change Biology. doi:10.1111/gcb.13632
Yuan MM, Zhang J, Xue K, Wu L, Deng Y, Deng J, Hale L, Zhou X, He Z, Yang Y, Van Nostrand JD, Schuur EAG, Konstantinidis KT, Penton CR, Cole JR, Tiedje JM, Luo Y, Zhou J Microbial functional diversity covaries with permafrost thaw-induced environmental heterogeneity in tundra soil. Global Change Biology, doi:0.1111/gcb.13820
Zhang X, Hutchings JA, Bianchi TS, Liu Y, Arellano AR, Schuur EAG (2017) Importance of lateral flux and its percolation depth on organic carbon export in Arctic tundra soil: Implications from a soil leaching experiment. Journal of Geophysical Research: Biogeosciences. doi:10.1002/2016JG003754
back to top
Abbott BW, Jones JBJ, Schuur EAG, Chapin FSI, Bowden WB, Bret-Harte MS, Epstein HE, Flannigan MD, Harms TK, Hollingsworth TN, Mack MC, McGuire AD, Natali S, M., Rocha AV, Tank SE, Turetsky M, R., Vonk JE, Wickland KP, Aiken GR, Alexander HD, Amon RMW, Bensoter BW, Bergeron Y, Bishop K, Blarquez O, Bond-Lamberty B, Breen AL, Buffam I, Cai Y, Carcaillet C, Carey SK, Chen JM, Chen HYH, Christensen TR, Cooper LW, Cornelissen JHC, de Groot WJ, DeLuca TH, Dorrepaal E, Fetcher N, Finlay JC, Forbes BC, French NHF, Gauthier S, Girardin MP, Goetz SJ, Goldammer JG, Gouch L, Grogan P, Guo L, Higuera PE, Hinzman L, Hu FS, Hugelius G, Jafarov EE, Jandt R, Johnstone JF, Karlsson J, Kasischke ES, Kattner G, Kelly R, Keuper F, Kling GW, Kortelainen P, Kouki J, Kuhry P, Laudon H, Laurion I, Macdonald RW, Mann PJ, Martikainen PJ, McClelland JW, Molau U, Oberbauer SF, Olefeldt D, Paré D, Parisien M-A, Payette S, Peng C, Pokrovksy OS, Rastetter EB, Raymond PA, Raynolds MK, Rein G, Reynolds JF, Robard M, Rogers BM, Schädel C, Schaefer K, Schmidt IK, Shvidenko A, Sky J, Spencer RGM, Starr G, Striegl RG, Teisserenc R, Tranvik LJ, Virtanen T, Welker JM, Zimov S (2016) Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environmental Research Letters, 11, 034014. http://dx.doi.org/10.1088/1748-9326/11/3/034014
Beer C (2016) Permafrost Sub-grid Heterogeneity of Soil Properties Key for 3-D Soil Processes and Future Climate Projections. Frontiers in Earth Science, 4. doi:10.3389/feart.2016.00081
Blanc-Betes E, Welker JM, Sturchio NC, Chanton JP, Gonzalez-Meler MA (2016) Winter precipitation and snow accumulation drive the methane sink or source strength of Arctic tussock tundra. Global Change Biology, 22, 2818-2833. doi:10.1111/gcb.13242
Bracho R, Natali S, Pegoraro E, Crummer KG, Schädel C, Celis G, Hale L, Wu L, Yin H, Tiedje JM, Konstantinidis KT, Luo Y, Zhou J, Schuur EAG (2016) Temperature sensitivity of organic matter decomposition of permafrost-region soils during laboratory incubations. Soil Biology and Biochemistry, 97, 1-14. doi:10.1016/j.soilbio.2016.02.008
Cao X, Aiken GR, Spencer RGM, Butler K, Mao J, Schmidt-Rohr K (2016) Novel insights from NMR spectroscopy into seasonal changes in the composition of dissolved organic matter exported to the Bering Sea by the Yukon River. Geochimica Et Cosmochimica Acta, 181, 72-88. doi:10.1016/j.gca.2016.02.029
Chen L, Liang J, Qin S, Liu L, Fang K, Xu Y, Ding J, Li F, Luo Y, Yang Y (2016) Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau. Nature Communications, 7, 13046. doi:10.1038/ncomms13046
Crichton KA, Bouttes N, Roche DM, Chappellaz J, Krinner G (2016) Permafrost carbon as a missing link to explain CO2 changes during the last deglaciation. Nature Geosci, 9, 683-686. doi:10.1038/ngeo2793
Ding J, Li F, Yang G, Chen L, Zhang B, Liu L, Fang K, Qin S, Chen Y, Peng Y, Ji C, He H, Smith P, Yang Y (2016) The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores. Global Change Biology. doi:10.1111/gcb.13257
Finger RA, Turetsky MR, Kielland K, Ruess RW, Mack MC, Euskirchen ES (2016) Effects of permafrost thaw on nitrogen availability and plant-soil interactions in a boreal Alaskan lowland. Journal of Ecology. doi:10.1111/1365-2745.12639
Grosse G, Goetz SJ, McGuire AD, Romanovsky VE, Schuur EAG (2016) Changing permafrost in a warming world and feedbacks to the Earth system. Environmental Research Letters, 11, 040201. http://dx.doi.org/10.1088/1748-9326/11/4/040201
Hagemann S, Blome T, Ekici A, Beer C (2016) Soil-frost-enabled soil-moisture–precipitation feedback over northern high latitudes. Earth Syst. Dynam., 7, 611-625. doi:10.5194/esd-7-611-2016
Harp DR, Atchley AL, Painter SL, Coon ET, Wilson CJ, Romanovsky VE, Rowland JC (2016) Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis. The Cryosphere, 10, 341-358. doi:10.5194/tc-10-341-2016
Helbig M, Wischnewski K, Kljun N, Chasmer LE, Quinton WL, Detto M, Sonnentag O (2016a) Regional atmospheric cooling and wetting effect of permafrost thaw-induced boreal forest loss. Global Change Biology, 22, 4048–4066. doi: 10.1111/gcb.13348
Helbig M, Pappas C, Sonnentag O (2016b) Permafrost thaw and wildfire: Equally important drivers of boreal tree cover changes in the Taiga Plains, Canada. Geophysical Research Letters, 43, 1598–1606. doi: 10.1002/2015GL067193
Hicks Pries CE, Schuur EAG, Natali SM, Crummer KG (2016) Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra. Nature Clim. Change, 6, 214-218. doi:10.1038/nclimate2830
Jafarov E, Schaefer K (2016) The importance of a surface organic layer in simulating permafrost thermal and carbon dynamics. The Cryosphere, 10, 465-475. doi:10.5194/tc-10-465-2016
Jones MC, Harden J, O'Donnell J, Manies K, Jorgenson T, Treat C, Ewing S (2016) Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands. Global Change Biology. doi:10.1111/gcb.13403
Kim Y, Park S-J, Lee B-Y, Risk D (2016) Continuous measurement of soil carbon efflux with Forced Diffusion (FD) chambers in a tundra ecosystem of Alaska. Science of the Total Environment, 566–567, 175-184. doi:10.1016/j.scitotenv.2016.05.052
Kwon MJ, Heimann M, Kolle O, Luus KA, Schuur EAG, Zimov N, Zimov SA, Göckede M (2016) Long-term drainage reduces CO2 uptake and increases CO2 emission on a Siberian floodplain due to shifts in vegetation community and soil thermal characteristics. Biogeosciences, 13, 4219-4235. doi:10.5194/bg-13-4219-2016
Kwon MJ, Beulig F, Ilie I, Wildner M, Küsel K, Merbold L, Mahecha MD, Zimov N, Zimov SA, Heimann M, Schuur EAG, Kostka JE, Kolle O, Hilke I, Göckede M (2016) Plants, microorganisms, and soil temperatures contribute to a decrease in methane fluxes on a drained Arctic floodplain. Global Change Biology. doi:10.1111/gcb.13558
Loranty MM, Lieberman-Cribbin W, Berner LT, Natali SM, Goetz SJ, Alexander HD, Kholodov AL (2016) Spatial variation in vegetation productivity trends, fire disturbance, and soil carbon across arctic-boreal permafrost ecosystems. Environmental Research Letters, 11, 095008. http://dx.doi.org/10.1088/1748-9326/11/9/095008
MacDougall AH, Knutti R (2016) Projecting the release of carbon from permafrost soils using a perturbed parameter ensemble modelling approach. Biogeosciences, 13, 2123–2136. https://doi.org/10.5194/bg-13-2123-2016
McGuire AD, Koven C, Lawrence DM, Clein JS, Xia J, Beer C, Burke E, Chen G, Chen X, Delire C, Jafarov E, MacDougall AH, Marchenko S, Nicolsky D, Peng S, Rinke A, Saito K, Zhang W, Alkama R, Bohn TJ, Ciais P, Decharme B, Ekici A, Gouttevin I, Hajima T, Hayes DJ, Ji D, Krinner G, Lettenmaier DP, Luo Y, Miller PA, Moore JC, Romanovsky V, Schädel C, Schaefer K, Schuur EAG, Smith B, Sueyoshi T, Zhuang Q (2016) Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009. Global Biogeochemical Cycles. doi:10.1002/2016GB005405
Miller SM, Miller CE, Commane R, Chang RYW, Dinardo SJ, Henderson JM, Karion A, Lindaas J, Melton JR, Miller JB, Sweeney C, Wofsy SC, Michalak AM (2016) A multiyear estimate of methane fluxes in Alaska from CARVE atmospheric observations. Global Biogeochemical Cycles. doi:10.1002/2016GB005419
Mu C, Zhang T, Zhang X, Li L, Guo H, Zhao Q, Cao L, Wu Q, Cheng G (2016) Carbon loss and chemical changes from permafrost collapse in the northern Tibetan Plateau. Journal of Geophysical Research: Biogeosciences, 121, 1781-1791. doi:10.1002/2015JG003235
O'Donnell JA, Aiken GR, Butler KD, Guillemette F, Podgorski DC, Spencer RGM (2016a) DOM composition and transformation in boreal forest soils: The effects of temperature and organic-horizon decomposition state. Journal of Geophysical Research: Biogeosciences, 121, 2727-2744. doi:10.1002/2016JG003431
O'Donnell JA, Aiken GR, Swanson DK, Panda S, Butler KD, Baltensperger AP (2016b) Dissolved organic matter composition of Arctic rivers: linking permafrost and parent material to riverine carbon. Global Biogeochemical Cycles, doi:10.1002/2016GB005482
Olefeldt D, Goswami S, Grosse G, Hayes D, Hugelius G, Kuhry P, McGuire AD, Romanovsky VE, Sannel ABK, Schuur EAG, Turetsky MR (2016) Circumpolar distribution and carbon storage of thermokarst landscapes. Nature Communications, 7, 13043. doi:10.1038/ncomms13043
Parazoo NC, Commane R, Wofsy SC, Koven CD, Sweeney C, Lawrence DM, Lindaas J, Chang RY-W, Miller CE (2016) Detecting regional patterns of changing CO2 flux in Alaska. Proceedings of the National Academy of Sciences, 113, 7733-7738. doi:10.1073/pnas.1601085113
Peng S, Ciais P, Krinner G, Wang T, Gouttevin I, McGuire AD, Lawrence D, Burke E, Chen X, Decharme B, Koven C, MacDougall A, Rinke A, Saito K, Zhang W, Alkama R, Bohn TJ, Delire C, Hajima T, Ji D, Lettenmaier DP, Miller PA, Moore JC, Smith B, Sueyoshi T (2016) Simulated high-latitude soil thermal dynamics during the past 4 decades. The Cryosphere, 10, 179-192. doi:10.5194/tc-10-179-2016
Salmon VG, Soucy P, Mauritz M, Celis G, Natali SM, Mack MC, Schuur EAG (2016) Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw. Global Change Biology. doi: 10.1111/gcb.13204
Schädel C, Bader MKF, Schuur EAG, Biasi C, Bracho R, Čapek P, De Baets S, Diáková K, Ernakovich J, Estop-Aragones C, Graham DE, Hartley IP, Iversen CM, Kane E, Knoblauch C, Lupascu M, Martikainen PJ, Natali SM, Norby RJ, O/'Donnell JA, Chowdhury TR, Šantrůčková H, Shaver G, Sloan VL, Treat CC, Turetsky MR, Waldrop MP, Wickland KP (2016) Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nature Clim. Change, 6, 950-953. doi:10.1038/nclimate3054
Schaefer K, Jafarov E (2016) A parameterization of respiration in frozen soils based on substrate availability. Biogeosciences, 13, 1991-2001. doi:10.5194/bg-13-1991-2016
Schuur EAG & Hugelius G(2016) Terrestrial Carbon Cycle. Arctic Report Card 2016. http://www.arctic.noaa.gov/Report-Card/Report-Card-2016/ArtMID/5022/ArticleID/281/Terrestrial-Carbon-Cycle
Tanski G, Couture N, Lantuit H, Eulenburg A, Fritz M (2016) Eroding permafrost coasts release low amounts of dissolved organic carbon (DOC) from ground ice into the nearshore zone of the Arctic Ocean. Global Biogeochemical Cycles, 30, 1054-1068. doi:10.1002/2015GB005337
Treat CC, Wollheim W, M., Varner R, K., Bowden W, B. (2016) Longer thaw seasons increase nitrogen availability for leaching during fall in tundra soils. Environmental Research Letters, 11, 064013. http://dx.doi.org/10.1088/1748-9326/11/6/064013
Wang W, Rinke A, Moore JC, Cui X, Ji D, Li Q, Zhang N, Wang C, Zhang S, Lawrence DM, McGuire AD, Zhang W, Delire C, Koven C, Saito K, MacDougall A, Burke E, Decharme B (2016a) Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area. The Cryosphere, 10, 287-306. doi:10.5194/tc-10-287-2016
Wang W, Rinke A, Moore JC, Ji D, Cui X, Peng S, Lawrence DM, McGuire AD, Burke EJ, Chen X, Decharme B, Koven C, MacDougall A, Saito K, Zhang W, Alkama R, Bohn TJ, Ciais P, Delire C, Gouttevin I, Hajima T, Krinner G, Lettenmaier DP, Miller PA, Smith B, Sueyoshi T, Sherstiukov AB (2016) Evaluation of air–soil temperature relationships simulated by land surface models during winter across the permafrost region. The Cryosphere, 10, 1721-1737. doi:10.5194/tc-10-1721-2016
Walter Anthony K, Daanen R, Anthony P, Schneider von Deimling T, Ping C-L, Chanton JP, Grosse G (2016) Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nature Geosci, advance online publication. doi:10.1038/ngeo2795
Webb EE, Schuur EAG, Natali SM, Oken KL, Bracho R, Krapek JP, Risk D, Nickerson NR (2016) Increased wintertime CO2 loss as a result of sustained tundra warming. Journal of Geophysical Research: Biogeosciences. doi:10.1002/2014JG002795
Wild B, Gentsch N, Čapek P, Diáková K, Alves RJE, Bárta J, Gittel A, Hugelius G, Knoltsch A, Kuhry P, Lashchinskiy N, Mikutta R, Palmtag J, Schleper C, Schnecker J, Shibistova O, Takriti M, Torsvik VL, Urich T, Watzka M, Šantrůčková H, Guggenberger G, Richter A (2016) Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils. Scientific Reports, 6, 25607. doi:10.1038/srep25607
Wik M, Varner RK, Anthony KW, MacIntyre S, Bastviken D (2016) Climate-sensitive northern lakes and ponds are critical components of methane release. Nature Geosci,doi:10.1038/ngeo2578
Xue K, M Yuan M, J Shi Z, Qin Y, Deng Y, Cheng L, Wu L, He Z, Van Nostrand JD, Bracho R, Natali S, Schuur EAG, Luo C, Konstantinidis KT, Wang Q, Cole JR, Tiedje JM, Luo Y, Zhou J (2016) Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nature Clim. Change, advance online publication
Yang Z, Wullschleger SD, Liang L, Graham DE, Gu B (2016) Effects of warming on the degradation and production of low-molecular-weight labile organic carbon in an Arctic tundra soil. Soil Biology and Biochemistry, 95, 202-211. doi:10.1016/j.soilbio.2015.12.022
Zhu D, Peng S, Ciais P, Zech R, Krinner G, Zimov S, Grosse G (2016) Simulating soil organic carbon in yedoma deposits during the Last Glacial Maximum in a land surface model. Geophysical Research Letters, 43, 5133-5142. doi:10.1002/2016GL068874
back to top
Abbott BW, Jones JB (2015) Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Global Change Biology. doi: 10.1111/gcb.13069
Abbott BW, Jones JB, Godsey SE, Larouche JR, Bowden WB (2015) Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost. Biogeosciences, 12, 3725-3740. doi:10.5194/bg-12-3725-2015
Bohn TJ, Melton JR, Ito A, Kleinen T, Spahni R, Stocker BD, Zhang B, Zhu X, Schroeder R, Glagolev MV, Maksyutov S, Brovkin V, Chen G, Denisov SN, Eliseev AV, Gallego-Sala A, McDonald KC, Rawlins MA, Riley WJ, Subin ZM, Tian H, Zhuang Q, Kaplan JO (2015) WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia. Biogeosciences, 12, 3321-3349. doi:10.5194/bg-12-3321-2015
Čapek P, Diáková K, Dickopp J-E, Bárta J, Wild B, Schnecker J, Alves RJE, Aiglsdorfer S, Guggenberger G, Gentsch N, Hugelius G, Lashchinsky N, Gittel A, Schleper C, Mikutta R, Palmtag J, Shibistova O, Urich T, Richter A, Šantrůčková H (2015) The effect of warming on the vulnerability of subducted organic carbon in arctic soils. Soil Biology and Biochemistry, 90, 19-29. doi:10.1016/j.soilbio.2015.07.013
Drake TW, Wickland KP, Spencer RGM, McKnight DM, Striegl RG (2015) Ancient low–molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1511705112
Ernakovich JG, Wallenstein MD (2015) Permafrost microbial community traits and functional diversity indicate low activity at in situ thaw temperatures. Soil Biology & Biochemistry, 87, 78-89. doi:10.1016/j.soilbio.2015.04.009
Feng X, Gustafsson Ö, Holmes RM, Vonk JE, van Dongen BE, Semiletov IP, Dudarev OV, Yunker MB, Macdonald RW, Wacker L, Montluçon DB, Eglinton TI (2015) Multimolecular tracers of terrestrial carbon transfer across the pan-Arctic: 14C characteristics of sedimentary carbon components and their environmental controls. Global Biogeochemical Cycles. doi: 10.1002/2015GB005204
Gentsch N, Mikutta R, Shibistova O, Wild B, Schnecker J, Richter A, Urich T, Gittel A, Šantrůčková H, Bárta J, Lashchinskiy N, Mueller CW, Fuß R, Guggenberger G (2015) Properties and bioavailability of particulate and mineral-associated organic matter in Arctic permafrost soils, Lower Kolyma Region, Russia. European Journal of Soil Science, 66, 722–734. doi:10.1111/ejss.12269
Hicks Pries CE, van Logtestijn RSP, Schuur EAG, Natali SM, Cornelissen JHC, Aerts R, Dorrepaal E (2015b) Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology, 21, 4508-4519. doi: 10.1111/gcb.13032
Hollesen J, Matthiesen H, Møller AB, Elberling B (2015) Permafrost thawing in organic Arctic soils accelerated by ground heat production. Nature Clim. Change. doi:10.1038/nclimate2590
Hope C, Schaefer K (2015) Economic impacts of carbon dioxide and methane released from thawing permafrost. Nature Clim. Change,doi:10.1038/nclimate2807
Jones BM, Grosse G, Arp CD, Miller E, Liu L, Hayes DJ, Larsen CF (2015) Recent Arctic tundra fire initiates widespread thermokarst development. Scientific Reports, 5, 15865. doi: 10.1038/srep15865
Juncher Jørgensen C, Lund Johansen KM, Westergaard-Nielsen A, Elberling B (2015) Net regional methane sink in High Arctic soils of northeast Greenland. Nature Geosci, 8, 20-23. doi:10.1038/ngeo2305
Kim Y (2015) Effect of thaw depth on fluxes of CO2 and CH4 in manipulated Arctic coastal tundra of Barrow, Alaska. Science of the Total Environment, 505, 0. 385-389, doi:http://dx.doi.org/10.1016/j.scitotenv.2014.09.046
Knoblauch C, Spott O, Evgrafova S, Kutzbach L, Pfeiffer E-M (2015) Regulation of methane production, oxidation, and emission by vascular plants and bryophytes in ponds of the northeast Siberian polygonal tundra. Journal of Geophysical Research: Biogeosciences, 120, 2525-2541. doi:10.1002/ 2015JG003053
Koven CD, Lawrence DM, Riley WJ (2015) Permafrost carbon−climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1415123112
Koven CD, Schuur EAG, Schädel C, Bohn TJ, Burke EJ, Chen G, Chen X, Ciais P, Grosse G, Harden JW, Hayes DJ, Hugelius G, Jafarov EE, Krinner G, Kuhry P, Lawrence DM, Macdougall AH, Marchenko SS, Mcguire AD, Natali SM, Nicolsky DJ, Olefeldt D, Peng S, Romanovsky VE, Schaefer KM, Strauss J, Treat CC, Turetsky M (2015) A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 373, DOI: 10.1098/rsta.2014.0423
Larouche JR, Abbott BW, Bowden WB, Jones JB (2015) The role of watershed characteristics, permafrost thaw, and wildfire on dissolved organic carbon biodegradability and water chemistry in Arctic headwater streams. Biogeosciences, 12, 4221-4233. doi:10.5194/bg-12-4221-2015
Lawrence DM, Koven CD, Swenson SC, Riley WJ, Slater AG (2015) Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environmental Research Letters, 10, 094011. http://dx.doi.org/10.1088/1748-9326/10/9/094011
MacDougall AH, Zickfeld K, Knutti R, Matthews HD (2015) Sensitivity of carbon budgets to permafrost carbon feedbacks and non-CO 2 forcings. Environmental Research Letters, 10, 125003. doi:10.1088/1748-9326/10/12/125003
Mann PJ, Eglinton TI, Mcintyre CP, Zimov N, Davydova A, Vonk JE, Holmes RM, Spencer RGM (2015) Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks. Nat Commun, 6. doi:10.1038/ncomms8856
Mueller CW, Rethemeyer J, Kao-Kniffin J, Löppmann S, Hinkel KM, G. Bockheim J (2015) Large amounts of labile organic carbon in permafrost soils of northern Alaska. Global Change Biology, 21, 2804–2817. doi:10.1111/gcb.12876
Natali SM, Schuur EaG, Mauritz M, Schade JD, Celis G, Crummer KG, Johnston C, Krapek J, Pegoraro E, Salmon VG, Webb EE (2015) Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. Journal of Geophysical Research: Biogeosciences, 120, 525-537. doi:10.1002/2014JG002872
Overduin PP , Liebner S, Knoblauch C, Günther F, Wetterich S, Schirrmeister L, Hubberten H-W, Grigoriev MN (2015) Methane oxidation following submarine permafrost degradation: Measurements from a central Laptev Sea shelf borehole. Journal of Geophysical Research: Biogeosciences, 120, 965-978. doi: 10.1002/2014JG002862
Ping CL, Jastrow JD, Jorgenson MT, Michaelson GJ, Shur YL (2015) Permafrost soils and carbon cycling. SOIL, 1, 147-171. doi:10.5194/soil-1-147-2015
Rawlins MA, Mcguire AD, Kimball JS, Dass P, Lawrence D, Burke E, Chen X, Delire C, Koven C, Macdougall A, Peng S, Rinke A, Saito K, Zhang W, Alkama R, Bohn TJ, Ciais P, Decharme B, Gouttevin I, Hajima T, Ji D, Krinner G, Lettenmaier DP, Miller P, Moore JC, Smith B, Sueyoshi T (2015) Assessment of model estimates of land-atmosphere CO2 exchange across Northern Eurasia. Biogeosciences, 12, 4385-4405. doi:10.5194/bg-12-4385-2015
Roy Chowdhury T, Herndon EM, Phelps TJ, Elias DA, Gu B, Liang L, Wullschleger SD, Graham DE (2015) Stoichiometry and temperature sensitivity of methanogenesis and CO2 production from saturated polygonal tundra in Barrow, Alaska. Global Change Biology, 21, 722-737. doi: 10.1111/gcb.12762
Sannel ABK, Hugelius G, Jansson P, Kuhry P (2015) Permafrost Warming in a Subarctic Peatland – Which Meteorological Controls are Most Important? Permafrost and Periglacial Processes. doi: 10.1002/ppp.1862
Salvadó JA, Tesi T, Andersson A, Ingri J, Dudarev OV, Semiletov IP, Gustafsson Ö (2015) Organic carbon remobilized from thawing permafrost is resequestered by reactive iron on the Eurasian Arctic Shelf. Geophysical Research Letters, 42, 8122-8130. doi: 10.1002/2015GL066058
Shakhova N , Semiletov I, Sergienko V, Lobkovsky L, Yusupov V, Salyuk A, Salomatin A, Chernykh D, Kosmach D, Panteleev G, Nicolsky D, Samarkin V, Joye S, Charkin A, Dudarev O, Meluzov A, Gustafsson O (2015) The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 373. doi: 10.1098/rsta.2014.0451
Schuur, EAG, McGuire AD, Schädel C, Grosse G., Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt C, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC and Vonk JE (2015). Climate change and the permafrost carbon feedback. Nature 520 (7546): 171-179. doi:10.1038/nature14338
Siewert MB, Hanisch J, Weiss N, Kuhry P, Maximov TC, Hugelius G (2015) Comparing carbon storage of Siberian tundra and taiga permafrost ecosystems at very high spatial resolution. Journal of Geophysical Research: Biogeosciences, 120, 1973-1994. DOI: 10.1002/2015JG002999
Strauss J, Schirrmeister L, Mangelsdorf K, Eichhorn L, Wetterich S, Herzschuh U (2015) Organic-matter quality of deep permafrost carbon – a study from Arctic Siberia. Biogeosciences, 12, 2227-2245. doi:10.5194/bg-12-2227-2015
Treat C, Natali SM, Ernakovich J, Iversen CM, Lupascu M, McGuire AD, Norby RJ, Roy Chowdhury T, Richter A, Šantrůčková H, Schädel C, Schuur EAG, Sloan VL, Turetsky MR, Waldrop MP (2015) A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations. Global Change Biology. doi:10.1111/gcb.12875
Vonk JE, Tank SE, Bowden WB, Laurion I, Vincent WF, Alekseychik P, Amyot M, Billet MF, Canário J, Cory RM, Deshpande BN, Helbig M, Jammet M, Karlsson J, Larouche J, MacMillan G, Rautio M, Walter Anthony KM, Wickland KP (2015) Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences, 12, 7129-7167. doi: 10.5194/bg-12-7129-2015
back to top
Abbott BW, Larouche JR, Jones JB, Bowden WB, Balser AW (2014) Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost. Journal of Geophysical Research: Biogeosciences, 119, 2014JG002678.
Aiken GR, Spencer RGM, Striegl RG, Schuster PF, Raymond PA (2014) Influences of glacier melt and permafrost thaw on the age of dissolved organic carbon in the Yukon River basin. Global Biogeochemical Cycles, 8, 2013GB004764.
Chang RY-W, Miller CE, Dinardo SJ et al. (2014) Methane emissions from Alaska in 2012 from CARVE airborne observations. Proceedings of the National Academy of Sciences. 10.1073/pnas.1412953111
Christensen RT (2014) Climate science: Understand Arctic methane variability. Nature 509, 279-281, doi:10.1038/509279a
Christiansen J, Romero A, Jørgensen NG, Glaring M, Jørgensen C, Berg L, Elberling B (2014) Methane fluxes and the functional groups of methanotrophs and methanogens in a young Arctic landscape on Disko Island, West Greenland. Biogeochemistry, 1-19, doi: 10.1007/s10533-014-0026-7
Deng J, Li C, Frolking S, Zhang Y, Bäckstrand K, Crill P (2014) Assessing effects of permafrost thaw on C fluxes based on multiyear modeling across a permafrost thaw gradient at Stordalen, Sweden. Biogeosciences, 11, 4753-4770
Hayes, DJ, Kicklighter DW, McGuire AD, Chen M, Zhuang Q, Yuan F, Melillo JM, and Wullschleger SD (2014) The impacts of recent permafrost thaw on land-atmosphere greenhouse gas exchange, Environmental Research Letters, 9, 045005, doi:10.1088/1748-9326/9/4/045005
Hodgkins SB, Tfaily MM, McCalley CK, Logan TA, Crill PM, Saleska SR, Rich VI, Chanton JP (2014) Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production. Proceedings of the National Academy of Sciences, doi:10.1073/pnas.1314641111
Hugelius G, Strauss J, Zubrzycki S et al. (2014) Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11, 6573-6593. doi:10.5194/bg-11-6573-2014
Lee H, Swenson SC, Slater AG, Lawrence DM (2014) Effects of excess ground ice on projections of permafrost in a warming climate. Environmental Research Letters, 9, 124006. doi:10.1088/1748-9326/9/12/124006
Li J, Luo Y, Natali S, Schuur EAG, Xia J, Kowalczyk E, Wang Y (2014) Modeling permafrost thaw and ecosystem carbon cycle under annual and seasonal warming at an Arctic tundra site in Alaska. Journal of Geophysical Research: Biogeosciences, 119, 2013JG002569.
Lupascu M, Welker JM, Seibt U, Maseyk K, Xu X, Czimczik CI (2014) High Arctic wetting reduces permafrost carbon feedbacks to climate warming. Nature Clim. Change, 4, 1. 51-55, doi: 10.1038/nclimate2058
Lupascu M, Welker JM, Xu X, Czimczik CI (2014) Rates and radiocarbon content of summer ecosystem respiration in response to long-term deeper snow in the High Arctic of NW Greenland. Journal of Geophysical Research: Biogeosciences, 119, 2013JG002494.
McCalley CK, Woodcroft BJ, Hodgkins SB, Wehr RA, Kim E-H, Mondav R, Crill PM, Chanton JP, Rich VI, Tyson GW, Saleska SR (2014) Methane dynamics regulated by microbial community response to permafrost thaw. Nature, 514, 7523. 478-481, doi: 10.1038/nature13798
Mondav R, Woodcroft BJ, Kim E-H, McCalley CK, Hodgkins SB, Crill PM, Chanton J, Hurst GB, VerBerkmoes NC, Saleska SR, Hugenholtz P, Rich VI, Tyson GW (2014) Discovery of a novel methanogen prevalent in thawing permafrost. Nat Commun, 5, doi: 10.1038/ncomms4212
Natali SM, Schuur EAG, Webb EE, Pries CEH, Crummer KG (2014) Permafrost degradation stimulates carbon loss from experimentally warmed tundra. Ecology, 95, 602-608. doi:10.1890/13-0602.1
O'Donnell JA, Aiken GR, Walvoord MA, Raymond PA, Butler KD, Dornblaser MM, Heckman K (2014) Using dissolved organic matter age and composition to detect permafrost thaw in boreal watersheds of interior Alaska. Journal of Geophysical Research: Biogeosciences, 2014JG002695.
Olefeldt, D. & Roulet, N. T. Permafrost conditions in peatlands regulate magnitude, timing, and chemical composition of catchment dissolved organic carbon export. Global Change Biology 20, 3122-3136, (2014). doi: 10.1111/gcb.12607
Schädel C, Schuur EAG, Bracho R et al.(2014) Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Global Change Biology, 20, 641-652. doi: 10.1111/gcb.12417
Schaefer K, Lantuit H, Romanovsky VE, Schuur EAG, Witt R (2014) The impact of the permafrost carbon feedback on global climate. Environmental Research Letters, 9, 085003. doi:10.1088/1748-9326/9/8/085003
Treat CC, Wollheim WM, Varner RK, Grandy AS, Talbot J, Frolking S (2014) Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats. Global Change Biology, 20, 2674-2686, doi: 10.1111/gcb.12572
Walter Anthony KM, Zimov SA, Grosse G et al. (2014) A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature, 511, 452-456. doi:10.1038/nature13560
Wik M, Thornton BF, Bastviken D, MacIntyre S, Varner RK, Crill PM (2014) Energy input is primary controller of methane bubbling in subarctic lakes. Geophysical Research Letters, 41, 2013GL058510
Wild B, Schnecker J, Alves RJE, Barsukov P, Bárta J, Čapek P, Gentsch N, Gittel A, Guggenberger G, Lashchinskiy N, Mikutta R, Rusalimova O, Šantrůčková H, Shibistova O, Urich T, Watzka M, Zrazhevskaya G, Richter A (2014) Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil. Soil Biology and Biochemistry, 75, 0. 143-151, doi:http://dx.doi.org/10.1016/j.soilbio.2014.04.014
back to top
Belshe EF, Schuur EAG, Bolker BM (2013a) Tundra ecosystems observed to be CO2 sources due to differential amplification of the carbon cycle. Ecology Letters, doi:10.1111/ele.12164
Belshe EF, Schuur EAG, Grosse G (2013b) Quantification of upland thermokarst features with high resolution remote sensing. Environmental Research Letters, 8, 3. 035016, doi:10.1088/1748-9326/8/3/035016
Burke EJ, Jones CD, Koven CD (2013) Estimating the permafrost-carbon climate response in the CMIP5 climate models using a simplified approach. Journal of Climate, 26, 14. 4897-4909, doi:10.1175/jcli-d-12-00550.1
Cory RM, Crump BC, Dobkowski JA, Kling GW (2013) Surface exposure to sunlight stimulates CO2 release from permafrost soil carbon in the Arctic. Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.1214104110
Elberling B, Michelsen A, Schädel C, Schuur EAG, Christiansen HH, Berg L, Tamstorf MP, Sigsgaard C (2013) Long-term CO2 production following permafrost thaw. Nature Clim. Change, 3, 10. 890-894, doi: 10.1038/nclimate1955
Feng X, Vonk JE, van Dongen BE, Gustafsson O, Semiletov IP, Dudarev OV, Wang Z, Montlucon DB, Wacker L, Eglinton TI (2013) Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins. Proceedings of the National Academy of Sciences of the United States of America, 110, 35. 14168-14173, doi: 10.1073/pnas.1307031110
Grosse G, Robinson JE, Bryant R, Taylor MD, Harper W, DeMasi A, Kyker-Snowman E, Veremeeva A, Schirrmeister L, Harden JW (2013) Distribution of late Pleistocene ice-rich syngenetic permafrost of the Yedoma Suite in east and central Siberia, Russia. U.S. Geological Survey Open File report, 2013-1078, 37 pp. Download here.
Hicks Pries CE, Schuur EAG, Crummer KG (2013a) Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology, 19, 2. 649-661, doi: 10.1111/gcb.12058
Hicks Pries CE, Schuur EAG, Vogel JG, Natali SM (2013b) Moisture drives surface decomposition in thawing tundra. Journal of Geophysical Research: Biogeosciences, 118, 3. 1133-1143, doi: 10.1002/jgrg.20089
Hugelius G, Tarnocai C, Broll G, Canadell JG, Kuhry P, Swanson DK (2013) The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth System Science Data, 5, 1. doi: 10.5194/essd-5-3-2013
Johnson KD, Harden JW, McGuire AD, Clark M, Yuan F, Finley AO (2013) Permafrost and organic layer interactions over a climate gradient in a discontinuous permafrost zone. Environmental Research Letters, 8, 3. 035028, doi:10.1088/1748-9326/8/3/035028
Jones BM, Breen AL, Gaglioti BV, Mann DH, Rocha AV, Grosse G, Arp CD, Kunz ML, Walker DA (2013) Identification of unrecognized tundra fire events on the north slope of Alaska. Journal of Geophysical Research-Biogeosciences, 118, 3. 1334-1344, doi: 10.1002/jgrg.20113
Jorgenson MT, Harden J, Kanevskiy M et al. (2013) Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes. Environmental Research Letters, 8, 035017.class="websitelink">doi:10.1088/1748-9326/8/3/035017
Knoblauch C, Beer C, Sosnin A, Wagner D, Pfeiffer E-M (2013) Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Global Change Biology, 19, 4. 1160-1172, doi: 10.1111/gcb.12116
Kuhry P, Grosse G, Harden JW, Hugelius G, Koven CD, Ping CL, Schirrmeister L, Tarnocai C (2013) Characterisation of the Permafrost Carbon Pool. Permafrost and Periglacial Processes, 24, 2. 146-155, doi: 10.1002/ppp.1782
Michaelson G, Ping CL, Clark M (2013) Soil Pedon Carbon and Nitrogen Data for Alaska: An Analysis and Update. Open Journal of Soil Science, 3, 2. 132-142, doi:10.4236/ojss.2013.32015
Mishra U, Jastrow JD, Matamala R, Hugelius G, Koven CD, Harden JW, Ping CL, Michaelson GJ, Fan Z, Miller RM, McGuire AD, Tarnocai C, Kuhry P, Riley WJ, Schaefer K, Schuur EAG, Jorgenson MT, Hinzman LD (2013) Empirical estimates to reduce modeling uncertainties of soil organic carbon in permafrost regions: a review of recent progress and remaining challenges. Environmental Research Letters, 8, 3. 035020, doi: 10.1088/1748-9326/8/3/035020
Olefeldt, D., Turetsky, M. R., Crill, P. M. & McGuire, A. D. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones. Global Change Biology 19, 589-603, (2013). doi: 10.1111/gcb.12071
Ping C-L, Clark MH, Kimble JM, Michaelson GJ, Shur Y, Stiles CA (2013) Sampling Protocols for Permafrost-Affected Soils. Soil Horizons, 54, 1. doi: 10.2136/sh12-09-0027
Schaphoff S, Heyder U, Ostberg S, Gerten D, Heinke J, Lucht W (2013) Contribution of permafrost soils to the global carbon budget. Environmental Research Letters, 8, 1. 014026, doi: 10.1088/1748-9326/8/1/014026
Schuur EAG, Abbott BW, Bowden WB, Brovkin V, Camill P, Canadell JG, Chanton JP, Chapin FS, III, Christensen TR, Ciais P, Crosby BT, Czimczik CI, Grosse G, Harden J, Hayes DJ, Hugelius G, Jastrow JD, Jones JB, Kleinen T, Koven CD, Krinner G, Kuhry P, Lawrence DM, McGuire AD, Natali SM, O’Donnell JA, Ping CL, Riley WJ, Rinke A, Romanovsky VE, Sannel ABK, Schädel C, Schaefer K, Sky J, Subin ZM, Tarnocai C, Turetsky MR, Waldrop MP, Walter Anthony KM, Wickland KP, Wilson CJ, Zimov SA (2013) Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change, 119, 2. 359-374, doi: 10.1007/s10584-013-0730-7. Download pdf.
Strauss J, Schirrmeister L, Grosse G, Wetterich S, Ulrich M, Herzschuh U, Hubberten H-W (2013) The Deep Permafrost Carbon Pool of the Yedoma Region in Siberia and Alaska. Geophysical Research Letters, 2013GL058088, doi: 10.1002/2013gl058088
Treat CC, Frolking S (2013) Carbon Storage: A permafrost carbon bomb? Nature Clim. Change, 3, 10. 865-867, doi: 10.1038/nclimate2010
Vaks A, Gutareva OS, Breitenbach SFM, Avirmed E, Mason AJ, Thomas AL, Osinzev AV, Kononov AM, Henderson GM (2013b) Speleothems Reveal 500,000-Year History of Siberian Permafrost. Science, 340, 6129. 183-186, doi: 10.1126/science.1228729
Vonk JE, Gustafsson O (2013) Permafrost-carbon complexities. Nature Geosci, 6, 675-676. doi:10.1038/ngeo1937
Vonk JE, Mann PJ, Davydov S, Davydova A, Spencer RGM, Schade J, Sobczak WV, Zimov N, Zimov S, Bulygina E, Eglinton TI, Holmes RM (2013a) High biolability of ancient permafrost carbon upon thaw. Geophysical Research Letters, 40, 11. 2689-2693, doi: 10.1002/grl.50348
Vonk JE, Mann PJ, Dowdy KL, Davydova A, Davydov SP, Zimov N, Spencer RGM, Bulygina EB, Eglinton TI, Holmes RM (2013c) Dissolved organic carbon loss from Yedoma permafrost amplified by ice wedge thaw. Environmental Research Letters, 8, 3. doi: 10.1088/1748-9326/8/3/035023
Wik M, Crill PM, Varner RK, Bastviken D (2013) Multiyear measurements of ebullitive methane flux from three subarctic lakes. Journal of Geophysical Research: Biogeosciences, 118, 3. 1307-1321, doi: 10.1002/jgrg.20103
Zubrzycki S, Kutzbach L, Grosse G, Desyatkin A, Pfeiffer EM (2013) Organic carbon and total nitrogen stocks in soils of the Lena River Delta. Biogeosciences, 10, 6. 3507-3524, doi: 10.5194/bg-10-3507-2013
back to top
Anthony KMW, Anthony P, Grosse G, Chanton J (2012) Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nature Geoscience, 5, 419-426. doi:10.1038/ngeo1480
Belshe EF, Schuur EAG, Bolker BM, Bracho R (2012) Incorporating spatial heterogeneity created by permafrost thaw into a landscape carbon estimate. Journal of Geophysical Research-Biogeosciences, 117. doi:10.1029/2011jg001836
Burke EJ, Hartley IP, Jones CD (2012) Uncertainties in the global temperature change caused by carbon release from permafrost thawing. Cryosphere, 6, 1063-1076. doi: 10.5194/tc-6-1063-2012
DeConto RM, Galeotti S, Pagani M et al. (2012) Past extreme warming events linked to massive carbon release from thawing permafrost. Nature, 484, 87-91. doi:10.1038/nature10929
Gouttevin I, Menegoz M, Domine F et al. (2012) How the insulating properties of snow affect soil carbon distribution in the continental pan-Arctic area. Journal of Geophysical Research-Biogeosciences, 117. doi: 10.1029/2011JG001916
Harden JW, Koven CD, Ping C-L et al. (2012) Field information links permafrost carbon to physical vulnerabilities of thawing. Geophysical Research Letters, 39. doi:10.1029/2012gl051958
Hicks Pries CE, Schuur EAG, Crummer KG (2012) Holocene Carbon Stocks and Carbon Accumulation Rates Altered in Soils Undergoing Permafrost Thaw. Ecosystems, 15, 162-173. doi: 10.1007/s10021-011-9500-4
Hugelius G (2012) Spatial upscaling using thematic maps: An analysis of uncertainties in permafrost soil carbon estimates. Global Biogeochem. Cycles, 26, GB2026. doi: 10.1029/2011GB004154
Hugelius G, Routh J, Kuhry P, Crill P (2012) Mapping the degree of decomposition and thaw remobilization potential of soil organic matter in discontinuous permafrost terrain. Journal of Geophysical Research-Biogeosciences, 117. doi:10.1029/2011jg001873
Jones MC, Grosse G, Jones BM, Walter Anthony K (2012) Peat accumulation in drained thermokarst lake basins in continuous, ice-rich permafrost, northern Seward Peninsula, Alaska. J. Geophys. Res., 117, G00M07. doi:10.1029/2011jg001766
Lee H, Schuur EAG, Inglett KS, Lavoie M, Chanton JP (2012) The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate. Global Change Biology, 18, 515-527. doi: 10.1111/j.1365-2486.2011.02519.x
MacDougall AH, Avis CA, Weaver AJ (2012) Significant contribution to climate warming from the permafrost carbon feedback. Nature Geoscience, 5, 719-721. doi:10.1038/ngeo1573
Mishra U, Riley WJ (2012) Alaskan soil carbon stocks: spatial variability and dependence on environmental factors. Biogeosciences, 9, 3637-3645. doi:10.5194/bg-9-3637-2012
Natali SM, Schuur EAG, Rubin RL (2012) Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. Journal of Ecology, 100, 488-498. doi: 10.1111/j.1365-2745.2011.01925.x
Olefeldt D, Roulet NT, Bergeron O, Crill P, Bäckstrand K, Christensen TR (2012) Net carbon accumulation of a high-latitude permafrost palsa mire similar to permafrost-free peatlands. Geophys. Res. Lett., 39, L03501. doi: 10.1029/2011GL050355
Olefeldt, D. & Roulet, N. T. Effects of permafrost and hydrology on the composition and transport of dissolved organic carbon in a subarctic peatland complex. J. Geophys. Res. 117, G01005, (2012). doi: 10.1029/2011JG001819
Schneider von Deimling T, Meinshausen M, Levermann A, Huber V, Frieler K, Lawrence DM, Brovkin V (2012) Estimating the near-surface permafrost-carbon feedback on global warming. Biogeosciences, 9, 649-665. doi:10.5194/bg-9-649-2012
Strauss J, Schirrmeister L, Wetterich S, Borchers A, Davydov SP (2012) Grain-size properties and organic-carbon stock of Yedoma Ice Complex permafrost from the Kolyma lowland, northeastern Siberia. Global Biogeochemical Cycles, 26. doi:10.1029/2011gb004104
Trucco C, Schuur EAG, Natali SM, Belshe EF, Bracho R, Vogel J (2012) Seven-year trends of CO2 exchange in a tundra ecosystem affected by long-term permafrost thaw. Journal of Geophysical Research: Biogeosciences, 117, G02031. doi: 10.1029/2011JG001907
Vonk JE, Alling V, Rahm L, Morth C-M, Humborg C, Gustafsson O (2012a) A centennial record of fluvial organic matter input from the discontinuous permafrost catchment of Lake Tornetrask. Journal of Geophysical Research-Biogeosciences, 117. doi:10.1029/2011JG001887
Vonk JE, Sanchez-Garcia L, van Dongen BE et al. (2012b) Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature, 489, 137-140. doi:10.1038/nature11392
back to top
Euskirchen ES, McGuire AD, Kicklighter DW et al.(2006) Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Global Change Biology, 12, 731-750. doi:10.1111/j.1365-2486.2006.01113.x
Grosse G, Harden J, Turetsky M et al. (2011) Vulnerability of high-latitude soil organic carbon in North America to disturbance. Journal of Geophysical Research-Biogeosciences, 116. doi:10.1029/2010jg001507
Hugelius G, Virtanen T, Kaverin D et al. (2011) High-resolution mapping of ecosystem carbon storage and potential effects of permafrost thaw in periglacial terrain, European Russian Arctic. Journal of Geophysical Research-Biogeosciences, 116. doi:10.1029/2010JG001606
Jorgenson MT, Shur YL, Pullman ER (2006) Abrupt increase in permafrost degradation in Arctic Alaska. Geophysical Research Letters, 33. doi:10.1029/2005gl024960
Koven CD, Ringeval B, Friedlingstein P et al. (2011) Permafrost carbon-climate feedbacks accelerate global warming. Proceedings of the National Academy of Sciences, 108, 14769-14774. doi:10.1073/pnas.1103910108
Lawrence DM, Slater AG, Romanovsky VE, Nicolsky DJ (2008) Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter. Journal of Geophysical Research-Earth Surface, 113. doi:10.1029/2007jf000883
McGuire AD, Hayes DJ, Kicklighter DW et al. (2010a) An analysis of the carbon balance of the Arctic Basin from 1997 to 2006. Tellus Series B-Chemical and Physical Meteorology, 62, 455-474. doi:10.1111/j.1600-0889.2010.00497.x
McGuire AD, Macdonald RW, Schuur EAG et al. (2010b) The carbon budget of the northern cryosphere region. Current Opinion in Environmental Sustainability, 2, 231-236. doi:10.1016/j.cosust.2010.05.003
Michaelson GJ, Ping CL (2003) Soil organic carbon and CO2 respiration at subzero temperature in soils of Arctic Alaska. Journal of Geophysical Research-Atmospheres, 108. doi:10.1029/2001jd000920
Osterkamp TE (2007) Characteristics of the recent warming of permafrost in Alaska. Journal of Geophysical Research-Earth Surface, 112. doi:10.1029/2006JF000578
Ping C-L, Michaelson GJ, Jorgenson MT, Kimble JM, Epstein H, Romanovsky VE, Walker DA (2008) High stocks of soil organic carbon in the North American Arctic region. Nature Geoscience, 1, 615-619.doi:10.1038/ngeo284
Schaefer K, Zhang T, Bruhwiler L, Barrett AP (2011) Amount and timing of permafrost carbon release in response to climate warming. Tellus Series B-Chemical and Physical Meteorology, 63, 165-180. doi:10.1111/j.1600-0889.2011.00527.x
Schirrmeister L, Grosse G, Wetterich S, Overduin PP, Strauss J, Schuur EAG, Hubberten H-W (2011) Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic. Journal of Geophysical Research-Biogeosciences, 116. doi:10.1029/2011jg001647
Schirrmeister L, Siegert C, Kunitzky VV, Grootes PM, Erlenkeuser H (2002) Late Quaternary ice-rich permafrost sequences as a paleoenvironmental archive for the Laptev Sea Region in northern Siberia. International Journal of Earth Sciences, 91, 154-167. doi:10.1007/s005310100205
Schuur EAG, Bockheim J, Canadell JG et al. (2008) Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience, 58, 701-714. doi:10.1641/b580807
Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 459, 556-559. doi:10.1038/nature08031
Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles, 23. doi:10.1029/2008gb003327
Turetsky MR, Kane ES, Harden JW, Ottmar RD, Manies KL, Hoy E, Kasischke ES (2011) Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nature Geoscience, 4, 27-31. doi:10.1038/ngeo1027
Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS, III (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature, 443, 71-75. doi:10.1038/nature05040
Zhuang Q, Melillo JM, Sarofim MC et al. (2006) CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century. Geophysical Research Letters, 33. doi:10.1029/2006gl026972
Zimov SA, Schuur EAG, Chapin FS (2006) Permafrost and the global carbon budget. Science, 312, 1612-1613. doi:10.1126/science.1128908
back to top