Permafrost Carbon Network

thermokarst lakescottongrasstussocksthermokarstyedoma

Newest publications on the topic of permafrost carbon

Filter by year: 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017

Here we post publications by members of the Permafrost Carbon Network, however, the list is not complete. For registered members of the Permafrost Carbon Network, we provide an EndNote Web library that contains all citations with the search terms 'permafrost and carbon'. Click here to access the EndNote Web library. Feel free to email if you think a publication is missing.

 

2017 (this list is not complete)

Andresen CG, Lara MJ, Tweedie CE, Lougheed VL (2017) Rising plant-mediated methane emissions from arctic wetlands. Global Change Biology, 23, 1128-1139. doi:10.1111/gcb.13469

Chadburn SE, Burke EJ, Cox PM, Friedlingstein P, Hugelius G, Westermann S (2017) An observation-based constraint on permafrost loss as a function of global warming. Nature Clim. Change, advance online publication.

Commane R, Lindaas J, Benmergui J, Luus KA, Chang RY-W, Daube BC, Euskirchen ES, Henderson JM, Karion A, Miller JB, Miller SM, Parazoo NC, Randerson JT, Sweeney C, Tans P, Thoning K, Veraverbeke S, Miller CE, Wofsy SC (2017) Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.161856711

Ding J, Chen L, Ji C, Hugelius G, Li Y, Liu L, Qin S, Zhang B, Yang G, Li F, Fang K, Chen Y, Peng Y, Zhao X, He H, Smith P, Fang J, Yang Y (2017) Decadal soil carbon accumulation across Tibetan permafrost regions. Nature Geosci, advance online publication

Harden JW, Sanderman J, Hugelius G (2017) Soils and the Carbon Cycle. In: International Encyclopedia of Geography: People, the Earth, Environment and Technology. John Wiley & Sons, Ltd. doi: 10.1002/9781118786352.wbieg1124

Mauritz M, Bracho R, Celis G, Hutchings J, Natali SM, Pegoraro E, Salmon VG, Schädel C, Webb EE, Schuur EAG (2017) Non-linear CO2 flux response to seven years of experimentally induced permafrost thaw. Global Change Biology. doi:10.1111/gcb.13661

Parmentier F-JW, Christensen TR, Rysgaard S, Bendtsen J, Glud RN, Else B, van Huissteden J, Sachs T, Vonk JE, Sejr MK (2017) A synthesis of the arctic terrestrial and marine carbon cycles under pressure from a dwindling cryosphere. Ambio, 46, 53-69. doi:10.1007/s13280-016-0872-8

Ruppel CD, Kessler JD (2017) The interaction of climate change and methane hydrates. Reviews of Geophysics. doi:10.1002/2016RG000534

Salzmann N, Gärtner-Roer I (2017) Climate Change and Permafrost. In: International Encyclopedia of Geography: People, the Earth, Environment and Technology. John Wiley & Sons, Ltd. doi: 10.1002/9781118786352.wbieg1124

Tarnocai C, Bockheim JG (2017) Soils of Cold and Permafrost-Affected Landscapes. In: International Encyclopedia of Geography: People, the Earth, Environment and Technology. John Wiley & Sons, Ltd. doi: 10.1002/9781118786352.wbieg0563

Vitharana UWA, Mishra U, Jastrow JD, Matamala R, Fan Z (2017) Observational needs for estimating Alaskan soil carbon stocks under current and future climate. Journal of Geophysical Research: Biogeosciences. doi:10.1002/2016JG003421

Walz J, Knoblauch C, Böhme L, Pfeiffer E-M (2017) Regulation of soil organic matter decomposition in permafrost-affected Siberian tundra soils - Impact of oxygen availability, freezing and thawing, temperature, and labile organic matter. Soil Biology and Biochemistry, 110, 34-43. http://dx.doi.org/10.1016/j.soilbio.2017.03.001

Wilson RM, Fitzhugh L, Whiting GJ, Frolking S, Harrison MD, Dimova N, Burnett WC, Chanton JP (2017) Greenhouse gas balance over thaw-freeze cycles in discontinuous zone permafrost. Journal of Geophysical Research: Biogeosciences. doi:10.1002/2016JG003600

Xia J, McGuire AD, Lawrence D, Burke E, Chen G, Chen X, Delire C, Koven C, MacDougall A, Peng S, Rinke A, Saito K, Zhang W, Alkama R, Bohn TJ, Ciais P, Decharme B, Gouttevin I, Hajima T, Hayes DJ, Huang K, Ji D, Krinner G, Lettenmaier DP, Miller PA, Moore JC, Smith B, Sueyoshi T, Shi Z, Yan L, Liang J, Jiang L, Zhang Q, Luo Y (2017) Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region. Journal of Geophysical Research: Biogeosciences, 122, 430-446. doi:10.1002/2016JG003384

Yu Q, Epstein H, Engstrom R, Walker D (2017) Circumpolar arctic tundra biomass and productivity dynamics in response to projected climate change and herbivory. Global Change Biology. doi:10.1111/gcb.13632

Zhang X, Hutchings JA, Bianchi TS, Liu Y, Arellano AR, Schuur EAG (2017) Importance of lateral flux and its percolation depth on organic carbon export in Arctic tundra soil: Implications from a soil leaching experiment. Journal of Geophysical Research: Biogeosciences. doi:10.1002/2016JG003754

 

2016 (this list is not complete)

Abbott BW, Jones JBJ, Schuur EAG, Chapin FSI, Bowden WB, Bret-Harte MS, Epstein HE, Flannigan MD, Harms TK, Hollingsworth TN, Mack MC, McGuire AD, Natali S, M., Rocha AV, Tank SE, Turetsky M, R., Vonk JE, Wickland KP, Aiken GR, Alexander HD, Amon RMW, Bensoter BW, Bergeron Y, Bishop K, Blarquez O, Bond-Lamberty B, Breen AL, Buffam I, Cai Y, Carcaillet C, Carey SK, Chen JM, Chen HYH, Christensen TR, Cooper LW, Cornelissen JHC, de Groot WJ, DeLuca TH, Dorrepaal E, Fetcher N, Finlay JC, Forbes BC, French NHF, Gauthier S, Girardin MP, Goetz SJ, Goldammer JG, Gouch L, Grogan P, Guo L, Higuera PE, Hinzman L, Hu FS, Hugelius G, Jafarov EE, Jandt R, Johnstone JF, Karlsson J, Kasischke ES, Kattner G, Kelly R, Keuper F, Kling GW, Kortelainen P, Kouki J, Kuhry P, Laudon H, Laurion I, Macdonald RW, Mann PJ, Martikainen PJ, McClelland JW, Molau U, Oberbauer SF, Olefeldt D, Paré D, Parisien M-A, Payette S, Peng C, Pokrovksy OS, Rastetter EB, Raymond PA, Raynolds MK, Rein G, Reynolds JF, Robard M, Rogers BM, Schädel C, Schaefer K, Schmidt IK, Shvidenko A, Sky J, Spencer RGM, Starr G, Striegl RG, Teisserenc R, Tranvik LJ, Virtanen T, Welker JM, Zimov S (2016) Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environmental Research Letters, 11, 034014. http://dx.doi.org/10.1088/1748-9326/11/3/034014

Beer C (2016) Permafrost Sub-grid Heterogeneity of Soil Properties Key for 3-D Soil Processes and Future Climate Projections. Frontiers in Earth Science, 4. doi:10.3389/feart.2016.00081

Blanc-Betes E, Welker JM, Sturchio NC, Chanton JP, Gonzalez-Meler MA (2016) Winter precipitation and snow accumulation drive the methane sink or source strength of Arctic tussock tundra. Global Change Biology, 22, 2818-2833. doi:10.1111/gcb.13242

Bracho R, Natali S, Pegoraro E, Crummer KG, Schädel C, Celis G, Hale L, Wu L, Yin H, Tiedje JM, Konstantinidis KT, Luo Y, Zhou J, Schuur EAG (2016) Temperature sensitivity of organic matter decomposition of permafrost-region soils during laboratory incubations. Soil Biology and Biochemistry, 97, 1-14. doi:10.1016/j.soilbio.2016.02.008

Cao X, Aiken GR, Spencer RGM, Butler K, Mao J, Schmidt-Rohr K (2016) Novel insights from NMR spectroscopy into seasonal changes in the composition of dissolved organic matter exported to the Bering Sea by the Yukon River. Geochimica Et Cosmochimica Acta, 181, 72-88. doi:10.1016/j.gca.2016.02.029

Chen L, Liang J, Qin S, Liu L, Fang K, Xu Y, Ding J, Li F, Luo Y, Yang Y (2016) Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau. Nature Communications, 7, 13046. doi:10.1038/ncomms13046

Crichton KA, Bouttes N, Roche DM, Chappellaz J, Krinner G (2016) Permafrost carbon as a missing link to explain CO2 changes during the last deglaciation. Nature Geosci, 9, 683-686. doi:10.1038/ngeo2793

Ding J, Li F, Yang G, Chen L, Zhang B, Liu L, Fang K, Qin S, Chen Y, Peng Y, Ji C, He H, Smith P, Yang Y (2016) The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores. Global Change Biology. doi:10.1111/gcb.13257

Finger RA, Turetsky MR, Kielland K, Ruess RW, Mack MC, Euskirchen ES (2016) Effects of permafrost thaw on nitrogen availability and plant-soil interactions in a boreal Alaskan lowland. Journal of Ecology. doi:10.1111/1365-2745.12639

Grosse G, Goetz SJ, McGuire AD, Romanovsky VE, Schuur EAG (2016) Changing permafrost in a warming world and feedbacks to the Earth system. Environmental Research Letters, 11, 040201. http://dx.doi.org/10.1088/1748-9326/11/4/040201

Hagemann S, Blome T, Ekici A, Beer C (2016) Soil-frost-enabled soil-moisture–precipitation feedback over northern high latitudes. Earth Syst. Dynam., 7, 611-625. doi:10.5194/esd-7-611-2016

Harp DR, Atchley AL, Painter SL, Coon ET, Wilson CJ, Romanovsky VE, Rowland JC (2016) Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis. The Cryosphere, 10, 341-358. doi:10.5194/tc-10-341-2016

Hicks Pries CE, Schuur EAG, Natali SM, Crummer KG (2016) Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra. Nature Clim. Change, 6, 214-218. doi:10.1038/nclimate2830

Jafarov E, Schaefer K (2016) The importance of a surface organic layer in simulating permafrost thermal and carbon dynamics. The Cryosphere, 10, 465-475. doi:10.5194/tc-10-465-2016

Jones MC, Harden J, O'Donnell J, Manies K, Jorgenson T, Treat C, Ewing S (2016) Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands. Global Change Biology. doi:10.1111/gcb.13403

Kim Y, Park S-J, Lee B-Y, Risk D (2016) Continuous measurement of soil carbon efflux with Forced Diffusion (FD) chambers in a tundra ecosystem of Alaska. Science of the Total Environment, 566–567, 175-184. doi:10.1016/j.scitotenv.2016.05.052

Kwon MJ, Heimann M, Kolle O, Luus KA, Schuur EAG, Zimov N, Zimov SA, Göckede M (2016) Long-term drainage reduces CO2 uptake and increases CO2 emission on a Siberian floodplain due to shifts in vegetation community and soil thermal characteristics. Biogeosciences, 13, 4219-4235. doi:10.5194/bg-13-4219-2016

Kwon MJ, Beulig F, Ilie I, Wildner M, Küsel K, Merbold L, Mahecha MD, Zimov N, Zimov SA, Heimann M, Schuur EAG, Kostka JE, Kolle O, Hilke I, Göckede M (2016) Plants, microorganisms, and soil temperatures contribute to a decrease in methane fluxes on a drained Arctic floodplain. Global Change Biology. doi:10.1111/gcb.13558

Loranty MM, Lieberman-Cribbin W, Berner LT, Natali SM, Goetz SJ, Alexander HD, Kholodov AL (2016) Spatial variation in vegetation productivity trends, fire disturbance, and soil carbon across arctic-boreal permafrost ecosystems. Environmental Research Letters, 11, 095008. http://dx.doi.org/10.1088/1748-9326/11/9/095008

McGuire AD, Koven C, Lawrence DM, Clein JS, Xia J, Beer C, Burke E, Chen G, Chen X, Delire C, Jafarov E, MacDougall AH, Marchenko S, Nicolsky D, Peng S, Rinke A, Saito K, Zhang W, Alkama R, Bohn TJ, Ciais P, Decharme B, Ekici A, Gouttevin I, Hajima T, Hayes DJ, Ji D, Krinner G, Lettenmaier DP, Luo Y, Miller PA, Moore JC, Romanovsky V, Schädel C, Schaefer K, Schuur EAG, Smith B, Sueyoshi T, Zhuang Q (2016) Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009. Global Biogeochemical Cycles. doi:10.1002/2016GB005405

Miller SM, Miller CE, Commane R, Chang RYW, Dinardo SJ, Henderson JM, Karion A, Lindaas J, Melton JR, Miller JB, Sweeney C, Wofsy SC, Michalak AM (2016) A multiyear estimate of methane fluxes in Alaska from CARVE atmospheric observations. Global Biogeochemical Cycles. doi:10.1002/2016GB005419

Mu C, Zhang T, Zhang X, Li L, Guo H, Zhao Q, Cao L, Wu Q, Cheng G (2016) Carbon loss and chemical changes from permafrost collapse in the northern Tibetan Plateau. Journal of Geophysical Research: Biogeosciences, 121, 1781-1791. doi:10.1002/2015JG003235

O'Donnell JA, Aiken GR, Butler KD, Guillemette F, Podgorski DC, Spencer RGM (2016a) DOM composition and transformation in boreal forest soils: The effects of temperature and organic-horizon decomposition state. Journal of Geophysical Research: Biogeosciences, 121, 2727-2744. doi:10.1002/2016JG003431

O'Donnell JA, Aiken GR, Swanson DK, Panda S, Butler KD, Baltensperger AP (2016b) Dissolved organic matter composition of Arctic rivers: linking permafrost and parent material to riverine carbon. Global Biogeochemical Cycles, doi:10.1002/2016GB005482

Olefeldt D, Goswami S, Grosse G, Hayes D, Hugelius G, Kuhry P, McGuire AD, Romanovsky VE, Sannel ABK, Schuur EAG, Turetsky MR (2016) Circumpolar distribution and carbon storage of thermokarst landscapes. Nature Communications, 7, 13043. doi:10.1038/ncomms13043

Parazoo NC, Commane R, Wofsy SC, Koven CD, Sweeney C, Lawrence DM, Lindaas J, Chang RY-W, Miller CE (2016) Detecting regional patterns of changing CO2 flux in Alaska. Proceedings of the National Academy of Sciences, 113, 7733-7738. doi:10.1073/pnas.1601085113

Peng S, Ciais P, Krinner G, Wang T, Gouttevin I, McGuire AD, Lawrence D, Burke E, Chen X, Decharme B, Koven C, MacDougall A, Rinke A, Saito K, Zhang W, Alkama R, Bohn TJ, Delire C, Hajima T, Ji D, Lettenmaier DP, Miller PA, Moore JC, Smith B, Sueyoshi T (2016) Simulated high-latitude soil thermal dynamics during the past 4 decades. The Cryosphere, 10, 179-192. doi:10.5194/tc-10-179-2016

Salmon VG, Soucy P, Mauritz M, Celis G, Natali SM, Mack MC, Schuur EAG (2016) Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw. Global Change Biology. doi: 10.1111/gcb.13204

Schädel C, Bader MKF, Schuur EAG, Biasi C, Bracho R, Čapek P, De Baets S, Diáková K, Ernakovich J, Estop-Aragones C, Graham DE, Hartley IP, Iversen CM, Kane E, Knoblauch C, Lupascu M, Martikainen PJ, Natali SM, Norby RJ, O/'Donnell JA, Chowdhury TR, Šantrůčková H, Shaver G, Sloan VL, Treat CC, Turetsky MR, Waldrop MP, Wickland KP (2016) Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nature Clim. Change, 6, 950-953. doi:10.1038/nclimate3054

Schaefer K, Jafarov E (2016) A parameterization of respiration in frozen soils based on substrate availability. Biogeosciences, 13, 1991-2001. doi:10.5194/bg-13-1991-2016

Schuur EAG & Hugelius G(2016) Terrestrial Carbon Cycle. Arctic Report Card 2016. http://www.arctic.noaa.gov/Report-Card/Report-Card-2016/ArtMID/5022/ArticleID/281/Terrestrial-Carbon-Cycle

Tanski G, Couture N, Lantuit H, Eulenburg A, Fritz M (2016) Eroding permafrost coasts release low amounts of dissolved organic carbon (DOC) from ground ice into the nearshore zone of the Arctic Ocean. Global Biogeochemical Cycles, 30, 1054-1068. doi:10.1002/2015GB005337

Treat CC, Wollheim W, M., Varner R, K., Bowden W, B. (2016) Longer thaw seasons increase nitrogen availability for leaching during fall in tundra soils. Environmental Research Letters, 11, 064013. http://dx.doi.org/10.1088/1748-9326/11/6/064013

Wang W, Rinke A, Moore JC, Cui X, Ji D, Li Q, Zhang N, Wang C, Zhang S, Lawrence DM, McGuire AD, Zhang W, Delire C, Koven C, Saito K, MacDougall A, Burke E, Decharme B (2016a) Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area. The Cryosphere, 10, 287-306. doi:10.5194/tc-10-287-2016

Wang W, Rinke A, Moore JC, Ji D, Cui X, Peng S, Lawrence DM, McGuire AD, Burke EJ, Chen X, Decharme B, Koven C, MacDougall A, Saito K, Zhang W, Alkama R, Bohn TJ, Ciais P, Delire C, Gouttevin I, Hajima T, Krinner G, Lettenmaier DP, Miller PA, Smith B, Sueyoshi T, Sherstiukov AB (2016) Evaluation of air–soil temperature relationships simulated by land surface models during winter across the permafrost region. The Cryosphere, 10, 1721-1737. doi:10.5194/tc-10-1721-2016

Walter Anthony K, Daanen R, Anthony P, Schneider von Deimling T, Ping C-L, Chanton JP, Grosse G (2016) Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nature Geosci, advance online publication. doi:10.1038/ngeo2795

Webb EE, Schuur EAG, Natali SM, Oken KL, Bracho R, Krapek JP, Risk D, Nickerson NR (2016) Increased wintertime CO2 loss as a result of sustained tundra warming. Journal of Geophysical Research: Biogeosciences. doi:10.1002/2014JG002795

Wild B, Gentsch N, Čapek P, Diáková K, Alves RJE, Bárta J, Gittel A, Hugelius G, Knoltsch A, Kuhry P, Lashchinskiy N, Mikutta R, Palmtag J, Schleper C, Schnecker J, Shibistova O, Takriti M, Torsvik VL, Urich T, Watzka M, Šantrůčková H, Guggenberger G, Richter A (2016) Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils. Scientific Reports, 6, 25607. doi:10.1038/srep25607

Wik M, Varner RK, Anthony KW, MacIntyre S, Bastviken D (2016) Climate-sensitive northern lakes and ponds are critical components of methane release. Nature Geosci,doi:10.1038/ngeo2578

Xue K, M Yuan M, J Shi Z, Qin Y, Deng Y, Cheng L, Wu L, He Z, Van Nostrand JD, Bracho R, Natali S, Schuur EAG, Luo C, Konstantinidis KT, Wang Q, Cole JR, Tiedje JM, Luo Y, Zhou J (2016) Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nature Clim. Change, advance online publication

Yang Z, Wullschleger SD, Liang L, Graham DE, Gu B (2016) Effects of warming on the degradation and production of low-molecular-weight labile organic carbon in an Arctic tundra soil. Soil Biology and Biochemistry, 95, 202-211. doi:10.1016/j.soilbio.2015.12.022

Zhu D, Peng S, Ciais P, Zech R, Krinner G, Zimov S, Grosse G (2016) Simulating soil organic carbon in yedoma deposits during the Last Glacial Maximum in a land surface model. Geophysical Research Letters, 43, 5133-5142. doi:10.1002/2016GL068874

 

2015 (this list is not complete)

Abbott BW, Jones JB (2015) Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Global Change Biology. doi: 10.1111/gcb.13069

Abbott BW, Jones JB, Godsey SE, Larouche JR, Bowden WB (2015) Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost. Biogeosciences, 12, 3725-3740. doi:10.5194/bg-12-3725-2015

Bohn TJ, Melton JR, Ito A, Kleinen T, Spahni R, Stocker BD, Zhang B, Zhu X, Schroeder R, Glagolev MV, Maksyutov S, Brovkin V, Chen G, Denisov SN, Eliseev AV, Gallego-Sala A, McDonald KC, Rawlins MA, Riley WJ, Subin ZM, Tian H, Zhuang Q, Kaplan JO (2015) WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia. Biogeosciences, 12, 3321-3349. doi:10.5194/bg-12-3321-2015

Čapek P, Diáková K, Dickopp J-E, Bárta J, Wild B, Schnecker J, Alves RJE, Aiglsdorfer S, Guggenberger G, Gentsch N, Hugelius G, Lashchinsky N, Gittel A, Schleper C, Mikutta R, Palmtag J, Shibistova O, Urich T, Richter A, Šantrůčková H (2015) The effect of warming on the vulnerability of subducted organic carbon in arctic soils. Soil Biology and Biochemistry, 90, 19-29. doi:10.1016/j.soilbio.2015.07.013

Drake TW, Wickland KP, Spencer RGM, McKnight DM, Striegl RG (2015) Ancient low–molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1511705112

Ernakovich JG, Wallenstein MD (2015) Permafrost microbial community traits and functional diversity indicate low activity at in situ thaw temperatures. Soil Biology & Biochemistry, 87, 78-89. doi:10.1016/j.soilbio.2015.04.009

Feng X, Gustafsson Ö, Holmes RM, Vonk JE, van Dongen BE, Semiletov IP, Dudarev OV, Yunker MB, Macdonald RW, Wacker L, Montluçon DB, Eglinton TI (2015) Multimolecular tracers of terrestrial carbon transfer across the pan-Arctic: 14C characteristics of sedimentary carbon components and their environmental controls. Global Biogeochemical Cycles. doi: 10.1002/2015GB005204

Hicks Pries CE, van Logtestijn RSP, Schuur EAG, Natali SM, Cornelissen JHC, Aerts R, Dorrepaal E (2015b) Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology, 21, 4508-4519. doi: 10.1111/gcb.13032

Hollesen J, Matthiesen H, Møller AB, Elberling B (2015) Permafrost thawing in organic Arctic soils accelerated by ground heat production. Nature Clim. Change. doi:10.1038/nclimate2590

Hope C, Schaefer K (2015) Economic impacts of carbon dioxide and methane released from thawing permafrost. Nature Clim. Change,doi:10.1038/nclimate2807

Jones BM, Grosse G, Arp CD, Miller E, Liu L, Hayes DJ, Larsen CF (2015) Recent Arctic tundra fire initiates widespread thermokarst development. Scientific Reports, 5, 15865. doi: 10.1038/srep15865

Juncher Jørgensen C, Lund Johansen KM, Westergaard-Nielsen A, Elberling B (2015) Net regional methane sink in High Arctic soils of northeast Greenland. Nature Geosci, 8, 20-23. doi:10.1038/ngeo2305

Kim Y (2015) Effect of thaw depth on fluxes of CO2 and CH4 in manipulated Arctic coastal tundra of Barrow, Alaska. Science of the Total Environment, 505, 0. 385-389, doi:http://dx.doi.org/10.1016/j.scitotenv.2014.09.046

Knoblauch C, Spott O, Evgrafova S, Kutzbach L, Pfeiffer E-M (2015) Regulation of methane production, oxidation, and emission by vascular plants and bryophytes in ponds of the northeast Siberian polygonal tundra. Journal of Geophysical Research: Biogeosciences, 120, 2525-2541. doi:10.1002/ 2015JG003053

Koven CD, Lawrence DM, Riley WJ (2015) Permafrost carbon−climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1415123112

Koven CD, Schuur EAG, Schädel C, Bohn TJ, Burke EJ, Chen G, Chen X, Ciais P, Grosse G, Harden JW, Hayes DJ, Hugelius G, Jafarov EE, Krinner G, Kuhry P, Lawrence DM, Macdougall AH, Marchenko SS, Mcguire AD, Natali SM, Nicolsky DJ, Olefeldt D, Peng S, Romanovsky VE, Schaefer KM, Strauss J, Treat CC, Turetsky M (2015) A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 373, DOI: 10.1098/rsta.2014.0423

Larouche JR, Abbott BW, Bowden WB, Jones JB (2015) The role of watershed characteristics, permafrost thaw, and wildfire on dissolved organic carbon biodegradability and water chemistry in Arctic headwater streams. Biogeosciences, 12, 4221-4233. doi:10.5194/bg-12-4221-2015

Lawrence DM, Koven CD, Swenson SC, Riley WJ, Slater AG (2015) Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environmental Research Letters, 10, 094011. http://dx.doi.org/10.1088/1748-9326/10/9/094011

Mann PJ, Eglinton TI, Mcintyre CP, Zimov N, Davydova A, Vonk JE, Holmes RM, Spencer RGM (2015) Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks. Nat Commun, 6. doi:10.1038/ncomms8856

Natali SM, Schuur EaG, Mauritz M, Schade JD, Celis G, Crummer KG, Johnston C, Krapek J, Pegoraro E, Salmon VG, Webb EE (2015) Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. Journal of Geophysical Research: Biogeosciences, 120, 525-537. doi:10.1002/2014JG002872

Overduin PP , Liebner S, Knoblauch C, Günther F, Wetterich S, Schirrmeister L, Hubberten H-W, Grigoriev MN (2015) Methane oxidation following submarine permafrost degradation: Measurements from a central Laptev Sea shelf borehole. Journal of Geophysical Research: Biogeosciences, 120, 965-978. doi: 10.1002/2014JG002862

Ping CL, Jastrow JD, Jorgenson MT, Michaelson GJ, Shur YL (2015) Permafrost soils and carbon cycling. SOIL, 1, 147-171. doi:10.5194/soil-1-147-2015

Rawlins MA, Mcguire AD, Kimball JS, Dass P, Lawrence D, Burke E, Chen X, Delire C, Koven C, Macdougall A, Peng S, Rinke A, Saito K, Zhang W, Alkama R, Bohn TJ, Ciais P, Decharme B, Gouttevin I, Hajima T, Ji D, Krinner G, Lettenmaier DP, Miller P, Moore JC, Smith B, Sueyoshi T (2015) Assessment of model estimates of land-atmosphere CO2 exchange across Northern Eurasia. Biogeosciences, 12, 4385-4405. doi:10.5194/bg-12-4385-2015

Roy Chowdhury T, Herndon EM, Phelps TJ, Elias DA, Gu B, Liang L, Wullschleger SD, Graham DE (2015) Stoichiometry and temperature sensitivity of methanogenesis and CO2 production from saturated polygonal tundra in Barrow, Alaska. Global Change Biology, 21, 722-737. doi: 10.1111/gcb.12762

Sannel ABK, Hugelius G, Jansson P, Kuhry P (2015) Permafrost Warming in a Subarctic Peatland – Which Meteorological Controls are Most Important? Permafrost and Periglacial Processes. doi: 10.1002/ppp.1862

Salvadó JA, Tesi T, Andersson A, Ingri J, Dudarev OV, Semiletov IP, Gustafsson Ö (2015) Organic carbon remobilized from thawing permafrost is resequestered by reactive iron on the Eurasian Arctic Shelf. Geophysical Research Letters, 42, 8122-8130. doi: 10.1002/2015GL066058

Shakhova N , Semiletov I, Sergienko V, Lobkovsky L, Yusupov V, Salyuk A, Salomatin A, Chernykh D, Kosmach D, Panteleev G, Nicolsky D, Samarkin V, Joye S, Charkin A, Dudarev O, Meluzov A, Gustafsson O (2015) The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 373. doi: 10.1098/rsta.2014.0451

Schuur, EAG, McGuire AD, Schädel C, Grosse G., Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt C, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC and Vonk JE (2015). Climate change and the permafrost carbon feedback. Nature 520 (7546): 171-179. doi:10.1038/nature14338

Siewert MB, Hanisch J, Weiss N, Kuhry P, Maximov TC, Hugelius G (2015) Comparing carbon storage of Siberian tundra and taiga permafrost ecosystems at very high spatial resolution. Journal of Geophysical Research: Biogeosciences, 120, 1973-1994. DOI: 10.1002/2015JG002999

Strauss J, Schirrmeister L, Mangelsdorf K, Eichhorn L, Wetterich S, Herzschuh U (2015) Organic-matter quality of deep permafrost carbon – a study from Arctic Siberia. Biogeosciences, 12, 2227-2245. doi:10.5194/bg-12-2227-2015

Treat C, Natali SM, Ernakovich J, Iversen CM, Lupascu M, McGuire AD, Norby RJ, Roy Chowdhury T, Richter A, Šantrůčková H, Schädel C, Schuur EAG, Sloan VL, Turetsky MR, Waldrop MP (2015) A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations. Global Change Biology. doi:10.1111/gcb.12875

Vonk JE, Tank SE, Bowden WB, Laurion I, Vincent WF, Alekseychik P, Amyot M, Billet MF, Canário J, Cory RM, Deshpande BN, Helbig M, Jammet M, Karlsson J, Larouche J, MacMillan G, Rautio M, Walter Anthony KM, Wickland KP (2015) Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences, 12, 7129-7167. doi: 10.5194/bg-12-7129-2015

 

2014 (this list is not complete)

Abbott BW, Larouche JR, Jones JB, Bowden WB, Balser AW (2014) Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost. Journal of Geophysical Research: Biogeosciences, 119, 2014JG002678.

Aiken GR, Spencer RGM, Striegl RG, Schuster PF, Raymond PA (2014) Influences of glacier melt and permafrost thaw on the age of dissolved organic carbon in the Yukon River basin. Global Biogeochemical Cycles, 8, 2013GB004764.

Chang RY-W, Miller CE, Dinardo SJ et al. (2014) Methane emissions from Alaska in 2012 from CARVE airborne observations. Proceedings of the National Academy of Sciences. 10.1073/pnas.1412953111

Christensen RT (2014) Climate science: Understand Arctic methane variability. Nature 509, 279-281, doi:10.1038/509279a

Christiansen J, Romero A, Jørgensen NG, Glaring M, Jørgensen C, Berg L, Elberling B (2014) Methane fluxes and the functional groups of methanotrophs and methanogens in a young Arctic landscape on Disko Island, West Greenland. Biogeochemistry, 1-19, doi: 10.1007/s10533-014-0026-7

Deng J, Li C, Frolking S, Zhang Y, Bäckstrand K, Crill P (2014) Assessing effects of permafrost thaw on C fluxes based on multiyear modeling across a permafrost thaw gradient at Stordalen, Sweden. Biogeosciences, 11, 4753-4770

Hayes, DJ, Kicklighter DW, McGuire AD, Chen M, Zhuang Q, Yuan F, Melillo JM, and Wullschleger SD (2014) The impacts of recent permafrost thaw on land-atmosphere greenhouse gas exchange, Environmental Research Letters, 9, 045005, doi:10.1088/1748-9326/9/4/045005

Hodgkins SB, Tfaily MM, McCalley CK, Logan TA, Crill PM, Saleska SR, Rich VI, Chanton JP (2014) Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production. Proceedings of the National Academy of Sciences, doi:10.1073/pnas.1314641111

Hugelius G, Strauss J, Zubrzycki S et al. (2014) Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11, 6573-6593. doi:10.5194/bg-11-6573-2014

Lee H, Swenson SC, Slater AG, Lawrence DM (2014) Effects of excess ground ice on projections of permafrost in a warming climate. Environmental Research Letters, 9, 124006. doi:10.1088/1748-9326/9/12/124006

Li J, Luo Y, Natali S, Schuur EAG, Xia J, Kowalczyk E, Wang Y (2014) Modeling permafrost thaw and ecosystem carbon cycle under annual and seasonal warming at an Arctic tundra site in Alaska. Journal of Geophysical Research: Biogeosciences, 119, 2013JG002569.

Lupascu M, Welker JM, Seibt U, Maseyk K, Xu X, Czimczik CI (2014) High Arctic wetting reduces permafrost carbon feedbacks to climate warming. Nature Clim. Change, 4, 1. 51-55, doi: 10.1038/nclimate2058

Lupascu M, Welker JM, Xu X, Czimczik CI (2014) Rates and radiocarbon content of summer ecosystem respiration in response to long-term deeper snow in the High Arctic of NW Greenland. Journal of Geophysical Research: Biogeosciences, 119, 2013JG002494.

McCalley CK, Woodcroft BJ, Hodgkins SB, Wehr RA, Kim E-H, Mondav R, Crill PM, Chanton JP, Rich VI, Tyson GW, Saleska SR (2014) Methane dynamics regulated by microbial community response to permafrost thaw. Nature, 514, 7523. 478-481, doi: 10.1038/nature13798

Mondav R, Woodcroft BJ, Kim E-H, McCalley CK, Hodgkins SB, Crill PM, Chanton J, Hurst GB, VerBerkmoes NC, Saleska SR, Hugenholtz P, Rich VI, Tyson GW (2014) Discovery of a novel methanogen prevalent in thawing permafrost. Nat Commun, 5, doi: 10.1038/ncomms4212

Natali SM, Schuur EAG, Webb EE, Pries CEH, Crummer KG (2014) Permafrost degradation stimulates carbon loss from experimentally warmed tundra. Ecology, 95, 602-608. doi:10.1890/13-0602.1

O'Donnell JA, Aiken GR, Walvoord MA, Raymond PA, Butler KD, Dornblaser MM, Heckman K (2014) Using dissolved organic matter age and composition to detect permafrost thaw in boreal watersheds of interior Alaska. Journal of Geophysical Research: Biogeosciences, 2014JG002695.

Olefeldt, D. & Roulet, N. T. Permafrost conditions in peatlands regulate magnitude, timing, and chemical composition of catchment dissolved organic carbon export. Global Change Biology 20, 3122-3136, (2014). doi: 10.1111/gcb.12607

Schädel C, Schuur EAG, Bracho R et al.(2014) Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Global Change Biology, 20, 641-652. doi: 10.1111/gcb.12417

Schaefer K, Lantuit H, Romanovsky VE, Schuur EAG, Witt R (2014) The impact of the permafrost carbon feedback on global climate. Environmental Research Letters, 9, 085003. doi:10.1088/1748-9326/9/8/085003

Treat CC, Wollheim WM, Varner RK, Grandy AS, Talbot J, Frolking S (2014) Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats. Global Change Biology, 20, 2674-2686, doi: 10.1111/gcb.12572

Walter Anthony KM, Zimov SA, Grosse G et al. (2014) A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature, 511, 452-456. doi:10.1038/nature13560

Wik M, Thornton BF, Bastviken D, MacIntyre S, Varner RK, Crill PM (2014) Energy input is primary controller of methane bubbling in subarctic lakes. Geophysical Research Letters, 41, 2013GL058510

Wild B, Schnecker J, Alves RJE, Barsukov P, Bárta J, Čapek P, Gentsch N, Gittel A, Guggenberger G, Lashchinskiy N, Mikutta R, Rusalimova O, Šantrůčková H, Shibistova O, Urich T, Watzka M, Zrazhevskaya G, Richter A (2014) Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil. Soil Biology and Biochemistry, 75, 0. 143-151, doi:http://dx.doi.org/10.1016/j.soilbio.2014.04.014

 

2013 (this list is not complete)

Belshe EF, Schuur EAG, Bolker BM (2013a) Tundra ecosystems observed to be CO2 sources due to differential amplification of the carbon cycle. Ecology Letters, doi:10.1111/ele.12164

Belshe EF, Schuur EAG, Grosse G (2013b) Quantification of upland thermokarst features with high resolution remote sensing. Environmental Research Letters, 8, 3. 035016, doi:10.1088/1748-9326/8/3/035016

Burke EJ, Jones CD, Koven CD (2013) Estimating the permafrost-carbon climate response in the CMIP5 climate models using a simplified approach. Journal of Climate, 26, 14. 4897-4909, doi:10.1175/jcli-d-12-00550.1

Cory RM, Crump BC, Dobkowski JA, Kling GW (2013) Surface exposure to sunlight stimulates CO2 release from permafrost soil carbon in the Arctic. Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.1214104110

Elberling B, Michelsen A, Schädel C, Schuur EAG, Christiansen HH, Berg L, Tamstorf MP, Sigsgaard C (2013) Long-term CO2 production following permafrost thaw. Nature Clim. Change, 3, 10. 890-894, doi: 10.1038/nclimate1955

Feng X, Vonk JE, van Dongen BE, Gustafsson O, Semiletov IP, Dudarev OV, Wang Z, Montlucon DB, Wacker L, Eglinton TI (2013) Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins. Proceedings of the National Academy of Sciences of the United States of America, 110, 35. 14168-14173, doi: 10.1073/pnas.1307031110

Grosse G, Robinson JE, Bryant R, Taylor MD, Harper W, DeMasi A, Kyker-Snowman E, Veremeeva A, Schirrmeister L, Harden JW (2013) Distribution of late Pleistocene ice-rich syngenetic permafrost of the Yedoma Suite in east and central Siberia, Russia. U.S. Geological Survey Open File report, 2013-1078, 37 pp. Download here.

Hicks Pries CE, Schuur EAG, Crummer KG (2013a) Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology, 19, 2. 649-661, doi: 10.1111/gcb.12058

Hicks Pries CE, Schuur EAG, Vogel JG, Natali SM (2013b) Moisture drives surface decomposition in thawing tundra. Journal of Geophysical Research: Biogeosciences, 118, 3. 1133-1143, doi: 10.1002/jgrg.20089

Hugelius G, Tarnocai C, Broll G, Canadell JG, Kuhry P, Swanson DK (2013) The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth System Science Data, 5, 1. doi: 10.5194/essd-5-3-2013

Johnson KD, Harden JW, McGuire AD, Clark M, Yuan F, Finley AO (2013) Permafrost and organic layer interactions over a climate gradient in a discontinuous permafrost zone. Environmental Research Letters, 8, 3. 035028, doi:10.1088/1748-9326/8/3/035028

Jones BM, Breen AL, Gaglioti BV, Mann DH, Rocha AV, Grosse G, Arp CD, Kunz ML, Walker DA (2013) Identification of unrecognized tundra fire events on the north slope of Alaska. Journal of Geophysical Research-Biogeosciences, 118, 3. 1334-1344, doi: 10.1002/jgrg.20113

Jorgenson MT, Harden J, Kanevskiy M et al. (2013) Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes. Environmental Research Letters, 8, 035017. doi:10.1088/1748-9326/8/3/035017

Knoblauch C, Beer C, Sosnin A, Wagner D, Pfeiffer E-M (2013) Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Global Change Biology, 19, 4. 1160-1172, doi: 10.1111/gcb.12116

Kuhry P, Grosse G, Harden JW, Hugelius G, Koven CD, Ping CL, Schirrmeister L, Tarnocai C (2013) Characterisation of the Permafrost Carbon Pool. Permafrost and Periglacial Processes, 24, 2. 146-155, doi: 10.1002/ppp.1782

Michaelson G, Ping CL, Clark M (2013) Soil Pedon Carbon and Nitrogen Data for Alaska: An Analysis and Update. Open Journal of Soil Science, 3, 2. 132-142, doi:10.4236/ojss.2013.32015

Mishra U, Jastrow JD, Matamala R, Hugelius G, Koven CD, Harden JW, Ping CL, Michaelson GJ, Fan Z, Miller RM, McGuire AD, Tarnocai C, Kuhry P, Riley WJ, Schaefer K, Schuur EAG, Jorgenson MT, Hinzman LD (2013) Empirical estimates to reduce modeling uncertainties of soil organic carbon in permafrost regions: a review of recent progress and remaining challenges. Environmental Research Letters, 8, 3. 035020, doi: 10.1088/1748-9326/8/3/035020

Olefeldt, D., Turetsky, M. R., Crill, P. M. & McGuire, A. D. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones. Global Change Biology 19, 589-603, (2013). doi: 10.1111/gcb.12071

Ping C-L, Clark MH, Kimble JM, Michaelson GJ, Shur Y, Stiles CA (2013) Sampling Protocols for Permafrost-Affected Soils. Soil Horizons, 54, 1. doi: 10.2136/sh12-09-0027

Schaphoff S, Heyder U, Ostberg S, Gerten D, Heinke J, Lucht W (2013) Contribution of permafrost soils to the global carbon budget. Environmental Research Letters, 8, 1. 014026, doi: 10.1088/1748-9326/8/1/014026

Schuur EAG, Abbott BW, Bowden WB, Brovkin V, Camill P, Canadell JG, Chanton JP, Chapin FS, III, Christensen TR, Ciais P, Crosby BT, Czimczik CI, Grosse G, Harden J, Hayes DJ, Hugelius G, Jastrow JD, Jones JB, Kleinen T, Koven CD, Krinner G, Kuhry P, Lawrence DM, McGuire AD, Natali SM, O’Donnell JA, Ping CL, Riley WJ, Rinke A, Romanovsky VE, Sannel ABK, Schädel C, Schaefer K, Sky J, Subin ZM, Tarnocai C, Turetsky MR, Waldrop MP, Walter Anthony KM, Wickland KP, Wilson CJ, Zimov SA (2013) Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change, 119, 2. 359-374, doi: 10.1007/s10584-013-0730-7. Download pdf.

Strauss J, Schirrmeister L, Grosse G, Wetterich S, Ulrich M, Herzschuh U, Hubberten H-W (2013) The Deep Permafrost Carbon Pool of the Yedoma Region in Siberia and Alaska. Geophysical Research Letters, 2013GL058088, doi: 10.1002/2013gl058088

Treat CC, Frolking S (2013) Carbon Storage: A permafrost carbon bomb? Nature Clim. Change, 3, 10. 865-867, doi: 10.1038/nclimate2010

Vaks A, Gutareva OS, Breitenbach SFM, Avirmed E, Mason AJ, Thomas AL, Osinzev AV, Kononov AM, Henderson GM (2013b) Speleothems Reveal 500,000-Year History of Siberian Permafrost. Science, 340, 6129. 183-186, doi: 10.1126/science.1228729

Vonk JE, Gustafsson O (2013) Permafrost-carbon complexities. Nature Geosci, 6, 675-676. doi:10.1038/ngeo1937

Vonk JE, Mann PJ, Davydov S, Davydova A, Spencer RGM, Schade J, Sobczak WV, Zimov N, Zimov S, Bulygina E, Eglinton TI, Holmes RM (2013a) High biolability of ancient permafrost carbon upon thaw. Geophysical Research Letters, 40, 11. 2689-2693, doi: 10.1002/grl.50348

Vonk JE, Mann PJ, Dowdy KL, Davydova A, Davydov SP, Zimov N, Spencer RGM, Bulygina EB, Eglinton TI, Holmes RM (2013c) Dissolved organic carbon loss from Yedoma permafrost amplified by ice wedge thaw. Environmental Research Letters, 8, 3. doi: 10.1088/1748-9326/8/3/035023

Wik M, Crill PM, Varner RK, Bastviken D (2013) Multiyear measurements of ebullitive methane flux from three subarctic lakes. Journal of Geophysical Research: Biogeosciences, 118, 3. 1307-1321, doi: 10.1002/jgrg.20103

Zubrzycki S, Kutzbach L, Grosse G, Desyatkin A, Pfeiffer EM (2013) Organic carbon and total nitrogen stocks in soils of the Lena River Delta. Biogeosciences, 10, 6. 3507-3524, doi: 10.5194/bg-10-3507-2013

 

2012 (list is not complete)

Anthony KMW, Anthony P, Grosse G, Chanton J (2012) Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nature Geoscience, 5, 419-426. doi:10.1038/ngeo1480

Belshe EF, Schuur EAG, Bolker BM, Bracho R (2012) Incorporating spatial heterogeneity created by permafrost thaw into a landscape carbon estimate. Journal of Geophysical Research-Biogeosciences, 117. doi:10.1029/2011jg001836

Burke EJ, Hartley IP, Jones CD (2012) Uncertainties in the global temperature change caused by carbon release from permafrost thawing. Cryosphere, 6, 1063-1076. doi: 10.5194/tc-6-1063-2012

DeConto RM, Galeotti S, Pagani M et al. (2012) Past extreme warming events linked to massive carbon release from thawing permafrost. Nature, 484, 87-91. doi:10.1038/nature10929

Gouttevin I, Menegoz M, Domine F et al. (2012) How the insulating properties of snow affect soil carbon distribution in the continental pan-Arctic area. Journal of Geophysical Research-Biogeosciences, 117. doi: 10.1029/2011JG001916

Harden JW, Koven CD, Ping C-L et al. (2012) Field information links permafrost carbon to physical vulnerabilities of thawing. Geophysical Research Letters, 39. doi:10.1029/2012gl051958

Hicks Pries CE, Schuur EAG, Crummer KG (2012) Holocene Carbon Stocks and Carbon Accumulation Rates Altered in Soils Undergoing Permafrost Thaw. Ecosystems, 15, 162-173. doi: 10.1007/s10021-011-9500-4

Hugelius G (2012) Spatial upscaling using thematic maps: An analysis of uncertainties in permafrost soil carbon estimates. Global Biogeochem. Cycles, 26, GB2026. doi: 10.1029/2011GB004154

Hugelius G, Routh J, Kuhry P, Crill P (2012) Mapping the degree of decomposition and thaw remobilization potential of soil organic matter in discontinuous permafrost terrain. Journal of Geophysical Research-Biogeosciences, 117. doi:10.1029/2011jg001873

Jones MC, Grosse G, Jones BM, Walter Anthony K (2012) Peat accumulation in drained thermokarst lake basins in continuous, ice-rich permafrost, northern Seward Peninsula, Alaska. J. Geophys. Res., 117, G00M07. doi:10.1029/2011jg001766

Lee H, Schuur EAG, Inglett KS, Lavoie M, Chanton JP (2012) The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate. Global Change Biology, 18, 515-527. doi: 10.1111/j.1365-2486.2011.02519.x

MacDougall AH, Avis CA, Weaver AJ (2012) Significant contribution to climate warming from the permafrost carbon feedback. Nature Geoscience, 5, 719-721. doi:10.1038/ngeo1573

Mishra U, Riley WJ (2012) Alaskan soil carbon stocks: spatial variability and dependence on environmental factors. Biogeosciences, 9, 3637-3645. doi:10.5194/bg-9-3637-2012

Natali SM, Schuur EAG, Rubin RL (2012) Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. Journal of Ecology, 100, 488-498. doi: 10.1111/j.1365-2745.2011.01925.x

Olefeldt D, Roulet NT, Bergeron O, Crill P, Bäckstrand K, Christensen TR (2012) Net carbon accumulation of a high-latitude permafrost palsa mire similar to permafrost-free peatlands. Geophys. Res. Lett., 39, L03501. doi: 10.1029/2011GL050355

Olefeldt, D. & Roulet, N. T. Effects of permafrost and hydrology on the composition and transport of dissolved organic carbon in a subarctic peatland complex. J. Geophys. Res. 117, G01005, (2012). doi: 10.1029/2011JG001819

Schneider von Deimling T, Meinshausen M, Levermann A, Huber V, Frieler K, Lawrence DM, Brovkin V (2012) Estimating the near-surface permafrost-carbon feedback on global warming. Biogeosciences, 9, 649-665. doi:10.5194/bg-9-649-2012

Strauss J, Schirrmeister L, Wetterich S, Borchers A, Davydov SP (2012) Grain-size properties and organic-carbon stock of Yedoma Ice Complex permafrost from the Kolyma lowland, northeastern Siberia. Global Biogeochemical Cycles, 26. doi:10.1029/2011gb004104

Trucco C, Schuur EAG, Natali SM, Belshe EF, Bracho R, Vogel J (2012) Seven-year trends of CO2 exchange in a tundra ecosystem affected by long-term permafrost thaw. Journal of Geophysical Research: Biogeosciences, 117, G02031. doi: 10.1029/2011JG001907

Vonk JE, Alling V, Rahm L, Morth C-M, Humborg C, Gustafsson O (2012a) A centennial record of fluvial organic matter input from the discontinuous permafrost catchment of Lake Tornetrask. Journal of Geophysical Research-Biogeosciences, 117. doi:10.1029/2011JG001887

Vonk JE, Sanchez-Garcia L, van Dongen BE et al. (2012b) Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature, 489, 137-140. doi:10.1038/nature11392

 

2011 and earlier

Euskirchen ES, McGuire AD, Kicklighter DW et al.(2006) Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Global Change Biology, 12, 731-750. doi:10.1111/j.1365-2486.2006.01113.x

Grosse G, Harden J, Turetsky M et al. (2011) Vulnerability of high-latitude soil organic carbon in North America to disturbance. Journal of Geophysical Research-Biogeosciences, 116. doi:10.1029/2010jg001507

Hugelius G, Virtanen T, Kaverin D et al. (2011) High-resolution mapping of ecosystem carbon storage and potential effects of permafrost thaw in periglacial terrain, European Russian Arctic. Journal of Geophysical Research-Biogeosciences, 116. doi:10.1029/2010JG001606

Jorgenson MT, Shur YL, Pullman ER (2006) Abrupt increase in permafrost degradation in Arctic Alaska. Geophysical Research Letters, 33. doi:10.1029/2005gl024960

Koven CD, Ringeval B, Friedlingstein P et al. (2011) Permafrost carbon-climate feedbacks accelerate global warming. Proceedings of the National Academy of Sciences, 108, 14769-14774. doi:10.1073/pnas.1103910108

Lawrence DM, Slater AG, Romanovsky VE, Nicolsky DJ (2008) Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter. Journal of Geophysical Research-Earth Surface, 113. doi:10.1029/2007jf000883

McGuire AD, Hayes DJ, Kicklighter DW et al. (2010a) An analysis of the carbon balance of the Arctic Basin from 1997 to 2006. Tellus Series B-Chemical and Physical Meteorology, 62, 455-474. doi:10.1111/j.1600-0889.2010.00497.x

McGuire AD, Macdonald RW, Schuur EAG et al. (2010b) The carbon budget of the northern cryosphere region. Current Opinion in Environmental Sustainability, 2, 231-236. doi:10.1016/j.cosust.2010.05.003

Michaelson GJ, Ping CL (2003) Soil organic carbon and CO2 respiration at subzero temperature in soils of Arctic Alaska. Journal of Geophysical Research-Atmospheres, 108. doi:10.1029/2001jd000920

Osterkamp TE (2007) Characteristics of the recent warming of permafrost in Alaska. Journal of Geophysical Research-Earth Surface, 112. doi:10.1029/2006JF000578

Ping C-L, Michaelson GJ, Jorgenson MT, Kimble JM, Epstein H, Romanovsky VE, Walker DA (2008) High stocks of soil organic carbon in the North American Arctic region. Nature Geoscience, 1, 615-619.doi:10.1038/ngeo284

Schaefer K, Zhang T, Bruhwiler L, Barrett AP (2011) Amount and timing of permafrost carbon release in response to climate warming. Tellus Series B-Chemical and Physical Meteorology, 63, 165-180. doi:10.1111/j.1600-0889.2011.00527.x

Schirrmeister L, Grosse G, Wetterich S, Overduin PP, Strauss J, Schuur EAG, Hubberten H-W (2011) Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic. Journal of Geophysical Research-Biogeosciences, 116. doi:10.1029/2011jg001647

Schirrmeister L, Siegert C, Kunitzky VV, Grootes PM, Erlenkeuser H (2002) Late Quaternary ice-rich permafrost sequences as a paleoenvironmental archive for the Laptev Sea Region in northern Siberia. International Journal of Earth Sciences, 91, 154-167. doi:10.1007/s005310100205

Schuur EAG, Bockheim J, Canadell JG et al. (2008) Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience, 58, 701-714. doi:10.1641/b580807

Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 459, 556-559. doi:10.1038/nature08031

Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles, 23. doi:10.1029/2008gb003327

Turetsky MR, Kane ES, Harden JW, Ottmar RD, Manies KL, Hoy E, Kasischke ES (2011) Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nature Geoscience, 4, 27-31. doi:10.1038/ngeo1027

Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS, III (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature, 443, 71-75. doi:10.1038/nature05040

Zhuang Q, Melillo JM, Sarofim MC et al. (2006) CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century. Geophysical Research Letters, 33. doi:10.1029/2006gl026972

Zimov SA, Schuur EAG, Chapin FS (2006) Permafrost and the global carbon budget. Science, 312, 1612-1613. doi:10.1126/science.1128908

 

back to top